North East New Territories (NENT) Landfill Extension

Monthly Environmental Monitoring and Audit Report (No. 32) – July 2025

2025-08-14

Meinhardt Infrastructure and

邁進基建環保工程顧問有限公司

33-35 Wong Chuk Hang Road Hong Kong 香港黃竹坑道33-35號

Tel 電話: +852 2858 0738 Fax 傳真: +852 2540 1580

mail@meinhardt.com.hk www.meinhardt-china.com www.meinhardtgroup.com

Environment Ltd

10/F Genesis

創協坊10樓

Our Ref.: CL/91823/2846-VES Date: 14 August 2025

By Email

Veolia Hong Kong Holding Limited 40/F, One Taikoo Place 979 King's Road Quarry Bay Hong Kong

Attn.: Mr. Colin Mitchell

Dear Sir

Re: Contract No. EP/SP/77/15

North-East New Territories Landfill Extension (NENTX) Monthly Environmental Monitoring and Audit Report (No.32) –

July 2025

I refer to Condition 3.3 under Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-02/292/2007, regarding the submission of a monthly Environmental Monitoring and Audit report. I hereby verify the captioned "Monthly Environmental Monitoring and Audit Report (No.32) – July 2025" dated 14 August 2025.

Should you have any queries, please do not hesitate to contact the undersigned at 2859 5409.

Yours faithfully

MEINHARDT INFRASTRUCTURE AND ENVIRONMENT LTD

Claudine Lee

Independent Environmental Checker

Aurecon Hong Kong Limited Unit 1608, 16/F, Tower B, Manulife Financial Centre, 223 – 231 Wai Yip Street, Kwun Tong Hong Kong

T +852 3664 6888 F +852 3664 6999 E hongkong@aurecongroup.com w aurecongroup.com

Ref: P521530-0000-REP-NN-0111

By Email

14 August 2025

Meinhardt Infrastructure & Environment Ltd. 10/F Genesis 33-35 Wong Chuk Hand Road Hong Kong

Attn: Ms. Claudine Lee,

Dear Claudine,

Re: Contract No. EP/SP/77/15

Northeast New Territories Landfill Extension

Submission of Monthly Environmental Monitoring and Audit Report (No.32) – July 2025

R1

In accordance with the requirement specified in Condition 3.3 of Environmental Permit No. EP-292/2007 and Further Environmental Permit No. FEP-02/292/2007, we are pleased to submit the certified "Monthly Environmental Monitoring and Audit Report (No.32) – Jul 2025 R1" dated 14 August 2025 for your verification.

Should you require any further information or clarification, please do not hesitate to contact the undersigned or our Mr. Keith Chau on 3664 6788.

Yours faithfully, For and on behalf of Aurecon Hong Kong Limited

Fredrick Leong

Environmental Team Leader

Encl.

1. Monthly Environmental Monitoring and Audit Report (No.32) – July 2025 R1

CC.

1. Veolia (Contractor) - Mr. Matt Choy (By email: matt.choy@veolia.com)

Document Control Record

Document prepared by:

Aurecon Hong Kong Limited

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223 – 231 Wai Yip Street, Kwun Tong, Kowloon

Hong Kong S. A. R.

T +852 3664 6888

F +852 3664 6999

E hongkong@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- **b)** Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docu	Document control aurecon					urecon
Report title		Monthly Environmental Monitoring and Audit Report (No. 32) - July 2025				
Document ID			Project number		P521531	
File path						
Client		Veolia Hong Kong Holding Ltd.				
Client contact			Client reference			
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver
0	07 Aug 2025	Draft	Jason Man	Keith Chau		Fredrick Leong
1	14 Aug 2025	First Version	Jason Man	Keith Chau		Fredrick Leong
Current revision		1				

Approval			
Reviewer's signature		Approver's signature	Toul
Name	Keith Chau	Name	Fredrick Leong
Title	Associate Director, Environmental	Title	Environmental Team Leader

Contents

Ex	ecutive Summary	1
1.	Introduction	3
2.	Project Information	5
3.	ecutive Summary Introduction Project Information Air Quality Monitoring Noise Monitoring Water Quality Monitoring	10
4	Noise Monitoring	19
5	Water Quality Monitoring	24
n	Wasie Management	-5.1
7	Landfill Gas Monitoring	34
8	Landscape and Visual	39
9	Cultural Heritage	40
10	Cultural Heritage	41
11	Site Inspection and Audit	42
12	Environmental Non-conformance	44
13	Implementation Status on Environmental Mitigation Measures	47
14	Future Key Issues	48
15	Conclusion	49

Figure

Figure 1 Location of the Project Site

Figure 2 Impact Air Quality, Noise & Surface Water Monitoring Locations

Figure 3 Landfill Gas Monitoring Locations

Appendix

Appendix A	Construction Programme & Construction Site Activities
Appendix B	Project Organization Chart & Management Structure
Appendix C	Detail Status of FEP & EP Submission
Appendix D	Monitoring Schedule for Reporting Month & Next Month
Appendix E	Calibration Certificates
Appendix F	Monitoring Results
Appendix G	Graphical Presentations
Appendix H	Notification of Environmental Quality Limits Exceedance
Appendix I	Wind Data
Appendix J	Waste Flow Table
Appendix K	Joint Environmental Site Inspection Records
Appendix L	Environmental Mitigation Implementation Schedule (EMIS)
Appendix M	Mitigation Measures of Cultural Landscape Features
Appendix N	Cumulative Complaint / Enquiry Log, Summaries of Complaints and Enquiries

All rights reserved | The information/data furnished in our document is confidential and competitive information proprietary to Aurecon or its sub-contractors, the release of which would harm the competitive position of Aurecon or its sub-contractors/consultants. This information/data shall not be reproduced, stored in a retrieval system, transmitted in any form or by any means, used or disclosed in whole or in part, for any purpose other than to evaluate and adjudicate this document. If Aurecon is shortlisted or a contract is awarded to Aurecon as a result of this solicitation, or in connection with the submission of such information/data, the right (and the extent thereof) to reproduce, store, transmit, use or disclose this information/data must, by agreement, be included in such contract.

Executive Summary

- ES1. Aurecon Hong Kong Limited (Aurecon) was appointed to undertake the role of Environmental Team (ET) and carry out Environmental Monitoring and Audit for the North East New Territories (NENT) Landfill Extension.
- ES2. The construction phase and EM&A programme of the Project commenced on 1 December 2022.
- ES3. This 32nd Monthly EM&A Report presents the EM&A works conducted from 1 to 31 July 2025 in accordance with the Updated EM&A Manual.

Summary of Construction Works undertaken during Report Period

ES4. The major construction works undertaken during the reporting period include:

ES Table1 Major Construction Works undertaken during the Reporting Period

- Material loading and unloading, backfilling of material and site traffic at Portion A, SBA to alternative disposal ground
- Construction of site buildings at Portion D
- Site clearance at Portion A, B2/E1, E3-1 & E4
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A, B2/E1, E3-1 & E4
- Tree felling at whole site
- Shotcreting (Permanent and Temporary) at whole site
- Soil nail installation at Portion A, B2/E1 & E4
- Installation of minipile at Portion A
- Construction of RE wall at Portion E3-1

Environmental Monitoring and Audit Progress

ES5. A summary of the monitoring activities in this reporting period is listed below:

ES Table2 Summary of the Monitoring Activities during the Reporting Period

Items	Times	Date
 Air Quality Monitoring during normal weekdays at each monitoring station 	5 times	4, 10, 16, 22 & 28 Jul 2025
 Construction Noise Monitoring during normal weekdays at each monitoring station 	5 times	4, 10, 15, 22 & 28 Jul 2025
 Surface Water Quality Monitoring during normal weekdays at each monitoring station 	1 time	15 Jul 2025
- Landfill Gas Monitoring during normal weekdays for Construction Works	26 times	2 to 5, 7 to 12, 14 to 19, 21 to 26 & 28 to 31 Jul 2025
- Joint Environmental Site Inspection	4 times	8, 14, 21 & 28 Jul 2025

Environmental Exceedance

Air Quality, Noise Monitoring, Surface Water Quality & Landfill Gas Monitoring

ES6. No exceedance of the Action and Limit Levels were recorded at designated monitoring stations during the reporting period.

Environmental Non-Conformance/Summons and Prosecution

ES7. No non-compliance event and summons/prosecutions were recorded during the reporting period.

Environmental Complaint

ES8. No environmental complaint was recorded during the reporting period.

Reporting Change

ES9. There was no reporting change in the reporting period.

Future Key Issues

ES10. Works to be undertaken in the next month include:

ES Table3 Major Construction Works undertaken during the Next Reporting Period

- Material loading and unloading, backfilling of material and site traffic at Portion A, SBA to alternative disposal ground
- Construction of site buildings at Portion D
- Site clearance at Portion A, B2/E1, E3-1 & E4
- Installation of permanent fencing at Portion A, B1 & E4
- Site formation at Portion A, B2/E1, E3-1 & E4
- Tree felling at whole site
- Shotcreting (Permanent and Temporary) at whole site
- Soil nail installation at Portion A, B2/E1 & E4
- Installation of minipile at Portion A
- Construction of RE wall at Portion E3-1
- ES11. Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

1 Introduction

1.1 Background

- 1.1.1 The North East New Territories Landfill Extension (the NENTX Project) is located adjacent to the existing North East New Territories (NENT) Landfill at Ta Kwu Ling. The extension site is located in a valley covering mainly the existing NENT Landfill Stockpile and Borrow Area that was formed to the east of the existing landfill as part of the original site development of the landfill, and layout plan shown in **Figure 1**.
- 1.1.2 The NENTX is a designated project. The Environmental Impact Assessment (EIA) Report (AEIAR-111/2007) and an Environmental Monitoring and Audit Manual were approved on 20 September 2007. The project is governed by an Environmental Permit (EP) (EP-292/2007) which was granted on 26 November 2007. A further of EP (FEP) was applied and the FEP (FEP-01/292/2007) was subsequently granted on 28 April 2022. Another further of EP (FEP-02/292/2007) was subsequently granted on 23 August 2023. The Updated EM&A Manual was approved by Director of Environmental Protection (DEP) on 4 January 2024.
- 1.1.3 In accordance with the requirements specified in Section 2.7 to 2.11 and Section 12.3 of the Updated EM&A Manual and Condition 3.3 of EP and FEP, Monthly EM&A report should be submitted to DEP, within 2 weeks after the end of the reporting month. The submissions shall be certified by the Environmental Team (ET) Leader and verified by the Independent Environmental Checker (IEC).
- 1.1.4 The construction phase and EM&A programme of the Project commenced on 1 December 2022.

1.2 Nature, Scale and Scope of the captioned Designated Project

1.2.1 The Nature, Scale and Scope of the captioned Designated Project is presented in **Table 1-**

Table 1-1 Nature, Scale and Scope of the captioned Designated Project

Item(s)	Content	
Nature of Designated Project	Construction and operation of a landfill for waste as defined in the "Waste Disposal Ordinance" (Cap. 354)	
Scale and Scope of Designated Project Construction and operation of a landfill extension hectares with a target void space of at least 19 million on the eastern side of the existing NENT Landfill, followings: -		
	 i. Site formation and preparation; ii. Installation of liner system; iii. Installation of leachate collection, treatment and disposal facilities; iv. Installation of gas collection, utilization and management facilities; v. Utilities provisions and drainage diversion; vi. Landfilling operation; vii. Restoration and aftercare in subsequent stages; and viii. Measures to mitigate environmental impacts as well as 	

1.3 Purpose of this Report

1.3.1 This is the 32nd Monthly EM&A Report which summarises the impact monitoring results and audit findings for the EM&A programme during the reporting period from 01 to 31 July 2025.

1.4 Structure of the Report

1.4.1 The structure of the report is as follows:

Section 1 – Introduction

- details the background, purpose and structure of the report.

Section 2 - Project Information

 summarises background and scope of the Project, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permit(s)/License(s) during the reporting period.

Section 3 - Air Quality Monitoring

- Construction Dust

Section 4 - Noise Monitoring

Section 5 - Water Quality Monitoring

- Groundwater Monitoring
- Surface Water Monitoring

Section 6 - Waste Management

Section 7 - Landfill Gas Monitoring

Section 8 - Landscape and Visual

Section 9 - Cultural Heritage

Section 10 – Ecological Monitoring

Section 11 - Site Inspection and Audit

Section 12 - Environmental Non-Conformance

Section 13 – Implementation Status on Environmental Mitigation Measures

Section 14 - Future Key Issues

Section 15 - Conclusion

2 Project Information

2.1 Construction Activities

2.1.1 Construction programme and a summary of the major construction activities undertaken in this reporting period is shown in **Appendix A**. The major construction works undertaken during the reporting period is presented in **Table 2-1**.

Table 2-1 Major Construction Works undertaken during the Reporting Period

-	Material loading and unloading, backfilling of material and site traffic at Portion A, SBA to alternative disposal ground
-	Construction of site buildings at Portion D
-	Site clearance at Portion A, B2/E1, E3-1 & E4
-	Installation of permanent fencing at Portion A, B1 & E4
-	Site formation at Portion A, B2/E1, E3-1 & E4
-	Tree felling at whole site
-	Shotcreting (Permanent and Temporary) at whole site
-	Soil nail installation at Portion A, B2/E1 & E4
-	Installation of minipile at Portion A
-	Construction of RE wall at Portion E3-1

2.2 Project Organization & Management Structure

2.2.1 The Project Organization Chart & Management Structure are shown in **Appendix B**. The key personnel contact information is summarized in **Table 2-2**.

Table 2-2 Contact Information of Key Personnel

Party	Name	Contact Number
Contractor (Veolia Hong Kong Holding Ltd.)	Mr. Matt Choy	2902 5296
Independent Environmental Checker (IEC)	Ms. Claudine Lee	2859 5409
(Meinhardt Infrastructure and Environment Ltd.)		
Environmental Team Leader (ETL) (Aurecon Hong Kong Limited)	Mr. Fredrick Leong	3664 6888

2.3 Status of Submission required under the EP & FEP during reporting period

2.3.1 The status of statutory environmental compliance with the EP & FEP conditions under the EIAO, submission status under the EP & FEP during reporting period are presented in **Table 2-3**. The detail status of statutory environmental compliance with the EP & FEP conditions under the EIAO, submission status under the EP & FEP for NENTX project are shown in **Appendix C**.

Table 2-3 Status of Submissions required under the EP & FEP during Reporting Period

EP Condition	FEP Condition	Submission / Measures Status	
2.3	2.1	Management Organization of Main Construction Companies	Submitted
2.4	2.2	Setting up of Community Liaison Group (CLG)	Community Liaison Group was set up.
2.5	2.3	Submission of EM&A Manual	Submitted
2.6	2.4	Submission of Preservation of Cultural Landscape Features	Submitted
2.7	2.5	Submission of Vegetation Survey (Transplantation Proposal)	Submitted
2.8	2.6	Submission of Translocation Proposal	Submitted
2.9	2.7	Submission of Transplantation Report and Post-Transplantation Monitoring	Submitted
2.10	2.8	Submission of Translocation Report and Post-Translocation Monitoring	Submitted
2.11	2.9	Submission of Detailed Landfill Gas Hazard Assessment Report	Submitted
2.12	2.10	Submission of Waste Management Plan	Submitted
2.13	2.11	Submission of Landscape Plan	Submitted
3.2	3.2	Submission of Baseline Monitoring Report	Submitted
3.3	3.3	Submission of Monthly EM&A Report	Submitted

2.4 Status of Environmental Approval Document

2.4.1 A summary of the relevant valid permits, licences, and/or notifications on environmental protection for this Project since the granting of the EP & FEP is presented in **Table 2-4**.

Table 2-4 Summary of the Relevant Valid Permits, Licences, and/or Notifications on Environmental Protection

Permit / Licenses / Notification	Reference	Expiry Date	Remark
Environmental Permit (EP)	EP-292/2007	Throughout the Contract	Permit granted on 26 November 2007
Further Environmental	FEP-01/292/2007	Throughout the Contract	Permit granted on 28 April 2022
Permit (FEP)	FEP-02/292/2007	Throughout the Contract	Permit granted on 23 August 2023
Notification of Construction Works as required under Air Pollution Control (Construction Dust) Regulation	479809	Throughout the Construction Phase	Notified on 13 May 2022
Registration of Waste Producer under Waste Disposal Ordinance	7043692	Throughout the Contract	Registered on 13 April 2022
Construction Noise Permit	GW-RN0508-25	18 August 2025	Permit granted on 8 May 2025
Registration as Chemical Waste Producer	5213-642-V2370-01	Throughout the Contract	Registered on 20 Feb 2025
Effluent Discharge License under Water			Permit granted on 18 October 2022
Pollution Control Ordinance	WT00042301-2022	31 October 2027	Variation of Licence (Permit granted on 7 February 2023)

2.5 Environmental Monitoring and Audit Progress

2.5.1 A summary of the monitoring activities in this reporting period is presented in **Table2-5**.

Table 2-5 Summary of the Monitoring Activities in this Reporting Period

Items	Times	Date
 Air Quality Monitoring during normal weekdays at each monitoring station 	5 times	4, 10, 16, 22 & 28 Jul 2025
 Construction Noise Monitoring during normal weekdays at each monitoring station 	5 times	4, 10, 15, 22 & 28 Jul 2025
 Surface Water Quality Monitoring during normal weekdays at each monitoring station 	1 time	15 Jul 2025
- Landfill Gas Monitoring during normal weekdays for Construction Works	26 times	2 to 5, 7 to 12, 14 to 19, 21 to 26 & 28 to 31 Jul 2025
- Joint Environmental Site Inspection	4 times	8, 14, 21 & 28 Jul 2025

Air Quality

2.5.2 5 sets of 1-hr & 24-hr TSP construction dust measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.

Noise

2.5.3 5 sets of 30-minute construction noise measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period.

Groundwater

2.5.4 The baseline groundwater monitoring was commenced on 28 March 2025. The details of baseline groundwater monitoring will be presented in the Baseline Monitoring Report.

Surface Water Quality

2.5.5 1 set of surface water quality measurement were carried out at each monitoring stations during normal weekdays of the reporting period. No exceedance of Action and Limit Level of surface water quality at each monitoring stations was recorded during the reporting period.

Landfill Gas

2.5.6 26 sets of landfill gas measurement were carried out at the designated monitoring locations during normal weekdays of the reporting period. No exceedance of Action and Limit Levels of landfill gas was recorded during the reporting period.

Landscape and Visual

2.5.7 All the specified and affected LCAs, LRs and VSRs have been monitored during the reporting period. No exceedance of Action and Limit Levels of landscape and visual was recorded during the reporting period.

Cultural Heritage

2.5.8 Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Ecology

2.5.9 Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

Environmental Site Inspection

2.5.10 4 weekly environmental site inspections were carried out during the reporting period. A joint environmental site inspection was carried out by the representatives of the Employer's Representative (ER), the Contractor, IEC and the ET on 21 July 2025. The Contractor has generally implemented part of the mitigation measures as recommended. No general site inspection was conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG) during the reporting period.

3 Air Quality Monitoring

3.1 Construction Dust

3.1.1 Monitoring Requirement

3.1.1.1 In accordance with the Updated EM&A Manual, 1-hr & 24-hr Total Suspended Particulates (TSP) levels should be measured at the designated air quality monitoring stations in every 6 days to ensure that any deteriorating air quality could be readily detected, and timely action shall be undertaken to rectify such situation. For 1-hr TSP monitoring, the sampling frequency of at least three times in every six-days should be undertaken when the highest dust impact occurs. The specific time to start and stop the 24- hr TSP monitoring shall be clearly defined for each location.

3.1.2 Monitoring Parameters, Frequency and Location

- 3.1.2.1 According to the Updated EM&A Manual, three monitoring stations namely AM(D)1, AM(D)2 and AM(D)3 are selected for the impact monitoring.
- 3.1.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at AM(D)1, AM(D)2 and AM(D)3, the adjusted stations at AM1, AM2 and AM3 were agreed with IEC prior to the baseline and impact monitoring. The locations of adjusted dust monitoring locations are shown in **Figure 2**.
- 3.1.2.3 The detailed monitoring schedule is shown in **Appendix D**. The locations of dust monitoring stations are shown in **Table 3-1**. The monitoring parameters, frequency and duration are shown in **Table 3-2**.

Table 3-1 Locations of Dust Monitoring Stations

Monitoring Station	Representative For	Monitoring Parameters
AM1	Tung Lo Hang	1-hr and 24-hr TSP
AM2	Heung Yuen Wai	1-hr and 24-hr TSP
AM3	Wo Keng Shan Tsuen	1-hr and 24-hr TSP

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

AM(D)1 Tung Lo Hang, AM(D)2 Heung Yuen Wai, AM(D)3 Wo Keng Shan Tsuen are the air monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative air monitoring locations (AM1, AM2 & AM3) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comment received from EPD.

Due to the adjustment of the location of AM(D)1, AM(D)2 & AM(D)3to AM1, AM2 & AM3, the measured air quality levels at AM1, AM2 & AM3 would represent the air quality levels at AM(D)1, AM(D)2 & AM(D)3.

Table 3-2 **Dust Impact Monitoring Parameters, Frequency and Duration**

Monitoring Station	Parameter	Frequency and Duration
AM1, AM2, AM3	1-hr TSP	At least 3 times per 6 days
AIVIT, AIVIZ, AIVIS	24-hr TSP	1 time per 6 days

3.1.3 **Monitoring Equipment**

- 3.1.3.1 High volume samplers (HVSs) were used for carrying out 24-hr TSP monitoring. For 1-hr TSP monitoring, direct reading dust meters were used to measure 1-hr TSP levels.
- Table 3-3 summarises the equipment that were used in the dust monitoring programme. 3.1.3.2 The calibration certificates are shown in **Appendix E**.

Table 3-3 **Dust Monitoring Equipment**

Equipment	Model	Expiry Date	Monitoring Station	
	TE-5170X (S/N: 1105)		AM1	
High Volume Sampler (HVS)	TE-5170X (S/N: 1106)	5 Aug 2025	AM2	
	TE-5170X (S/N: 1856)		AM3	
	Sibata LD- 5R (S/N: 0Z4545)			
Direct Reading Dust Meter	Sibata LD- 5R (S/N: 882106)	12 Sep 2025	AM1 to AM3	
	Sibata LD- 5R (S/N: 942532)			
Calibration Kit (for HVS)	TE-5025A (S/N: 3465)	2 Dec 2025	AM1 to AM3	

The Expiry Date of Calibration Kit (for HVS) reflected that the calibration certificate fulfils the bi-monthly calibration interval requirement for the HVS.

3.1.4 Monitoring Methodology

1-hr TSP Monitoring

3.1.4.1 The 1-hr TSP impact monitoring was conducted using a portable direct reading dust meter.

Measuring Procedures

3.1.4.2 The measuring procedures of the 1-hr dust meter has been undertaken in accordance with the Manufacturer's Instruction Manual as follows:

Procedure of starting monitoring

- Place the 1-hr dust meter at least 1.3m above ground;
- Turn on the "On/Off" button at the side of instrument. Program will be changed to "BG" mode and leave it for 1 minute.
- Pull out the Suction adaptor and turn the button at the side. Cover with hand at the suction adaptor measure the background for 10 seconds.
- Press "UP" and "DOWN" for choosing "SPAM Mode" for SPAM Measurement.
- Press "Up" and "Down" to select "Measurement Mode" with 60 minutes interval and unit in ug/m3.
- Press "Start/Stop" to start monitoring.

Procedure of setting measurement timer

- Press "Up" or "Down" to find "Setting LOG".
- Select "Record Cycle" and change the record time subject to different project requirement. For example, setting the record cycle as 60 minutes for normal operation.
- Press "ESCAPE" back to the main page.
- Press "Up" or "Down" to access "Measurement Timer" and select "Measurement time" to change the time to 3 hours.
- Information such as sampling date, time, count value and site condition will be recorded during the monitoring period.

Calibration & Maintenance

- 3.1.4.3 The direct reading dust meters will be verified against calibrated high volume samples (HVSs) annually. A 2-day, three 3-hour measurement results per day from direct reading dust meter will be taken to compare with the sampling results from the HVS. The correlation between the direct reading dust meter and the HVS will then be concluded. By accounting for the correlation factor, the direct reading dust meter will be considered to achieve comparable results as that of the HVS.
- 3.1.4.4 All digital dust indicator will be calibrated with on-site HVS annually. Calibration certificate will be provided after calibration. The Calibration process shall eyewitness with the representative of ET & IEC.

Quality Audit

- 3.1.4.5 Checklist of regular checking for digital dust meter will be conducted bi-weekly by environmental technician to ensure the all-digital dust meter are in good condition and submitted to supervisors. All checklists will be kept by supervisors.
- 3.1.4.6 Logbook is provided to environmental technician record the transferal of equipment to other colleagues, reporting to supervisors is required.

24-hr TSP Monitoring

3.1.4.7 The 24-hr TSP monitoring has been conducted using a High-Volume Sampler (HVS).

Measuring Procedures

- 3.1.4.8 The HVS has been set-up at the monitoring location with a fixed power supply for operation. The measuring procedures of the 24-hr TSP measurements has been undertaken in accordance with the specifications listed in the EM&A Manual. Each HVS includes a motor, a filter holder, a flow controller and a sampling inlet in accordance with the performance specification of the USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50), Appendix B. The measuring procedures of the 24-hr dust meter was undertaken in accordance with the Manufacturer's Instruction Manual as follows:
 - The power supply will be checked to ensure the HVS works properly;
 - The filter holder and the area surrounding the filter will be cleaned;
 - The filter holder will be removed by loosening the four bolts and a new filter on a supporting screen will be aligned carefully;
 - The filter will be properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter;
 - The swing bolts will be fastened to hold the filter holder down to the frame. The pressure applied should be sufficient to avoid air leakage at the edges;
 - The shelter lid will be closed and secured with the aluminium strip;
 - The HVS will be warmed-up to establish run-temperature conditions;
 - A new flowrate record sheet will be set into the flow recorder;
 - The programmable timer will be set for a sampling period of 24 hour, and the starting time, weather condition and the filter number will be recorded;
 - · The initial elapsed time will be recorded;
 - At the end of sampling, the sampled filter will be removed carefully and folded in halflength so that only surfaces with collected particulate matter will be in contact;
 - The sample will be placed in a clean plastic envelope and sealed;
 - · All monitoring information will be recorded on a standard data sheet; and
 - The filters will be taken back to HOKLAS accredited laboratory for analysis.
- 3.1.4.9 In addition, site conditions and dust sources were recorded in a standard form for direct input into a database.

Calibration & Maintenance

- 3.1.4.10 The high volume motors and their accessories should be properly maintained, including routine motor brushes replacement and electrical wiring checking, to ensure that the equipment and a continuous power supply were in good working condition.
- 3.1.4.11 Initial calibration of dust monitoring equipment shall be conducted upon installation and thereafter at bi-monthly intervals. The transfer standard shall be traceable to the internationally recognized primary standard and be calibrated annually.

The detail procedure of calibration of HVS is listed below:

- 1. Make sure the electrical circuit is connected properly. The motor should be directly connected to the power source.
- 2. Open the top cover and unlock the screws at the four corners.
- 3. Install the orifice and adapter plate to high volume air sample. Tighten the nut securely. Turn the knob of orifice clock-wise to close the four holes on the bottom open.
- 4. Hold the water manometer on the cover of mass flow controller vertically. Connect one side of a water manometer to the pressure tap on the side of the orifice with a rubber vacuum tube. Leave opposite side of the manometer open to the atmosphere.
- 5. Turn on the sampler
- 6. Five flow rates are achieved by changing the different plates to change the resistance. Record the manometer reading and the reading from continuous flow recorder. At least 5 sets of data should be recorded.
- 3.1.4.12 The Calibration process shall eyewitness with the representative of ET & IEC.

3.1.5 Monitoring Results

3.1.5.1 The impact dust monitoring results are summarized in **Table 3-4** and **Table 3-5**. The monitoring data together with graphical presentations are presented in **Appendix F** and **Appendix G**.

Table 3-4 Summary of Impact 1-hr TSP Monitoring Results

	Average 1-hr TSP Concentration, µg/m³ (Range) Month Dust Monitoring Station				
Month					
	AM1	AM2	AM3		
Jul 2025	31 (21 – 46)	39 (29 – 44)	53 (40 – 62)		
Action Level	>285	>279	>285		
Limit Level	>500				

Table 3-5 Summary of Impact 24-hr TSP Monitoring Results

	Average 24-hr TSP Concentration, μg/m³ (Range)				
Month	Dust Monitoring Station				
	AM1	AM2	AM3		
Jul 2025	68 (63 – 71)	73 (68 – 76)	82 (76 – 89)		
Action Level	>164	>152	>163		
Limit Level	>260				

3.1.5.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance during the reporting period are shown in **Table 3-6**. The Notification of Environmental Quality Limits Exceedances are presented in **Appendix H**.

Table 3-6 Summary of Impact 1-hr & 24-hr TSP Exceedance during the Reporting Period

Dust Mon	itoring Station	AM1		AM2		AM3	
Parameters	evel Exceedance	Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
1-hr TSP	Exceedance Date	-	-	-	-	-	-
	Exceedance Count	0	0	0	0	0	0
24-hr TSP	Exceedance Date	-	-	-	-	-	-
	Exceedance Count	0	0	0	0	0	0

Remarks: * equal to non-project related

3.1.5.3 No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring at AM1, AM2 & AM3 was recorded during the period.

3.1.6 Wind Data Monitoring

3.1.6.1 During the monitoring period. wind data from existing weather station in the vicinity of the designated monitoring location, i.e Ta Kwu Ling station operated by Hong Kong Observatory was adopted. It is considered that the wind data obtained from Ta Kwu Ling station are representative of the Project area and could be used for the construction dust monitoring programme for the Project. The results for wind data monitoring are presented in **Appendix** I.

3.1.7 Recommended Mitigation Measures

- 3.1.7.1 The recommended dust mitigation measures from EIA report are listed as followed:
 - The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.
 - Dust emission from construction vehicle movement is confined within the worksites area.
 - Watering facilities will be provided at every designated vehicular exit point.
 - Good site practice is recommended during construction phase.

3.1.8 Event and Action Plan

3.1.7.2 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 3-7** shall be carried out.

Table 3-7 Event and Action Plan for Dust Impact

Event	ET	IEC	Contractor
Exceedance of Action Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level 		Amend working methods if appropriate
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform Contractor and IEC Repeat measurements to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below action level Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Continue monitoring at daily intervals if exceedance is due to the Project If no exceedance for 3 consecutive days, cease additional monitoring 	 Proposed remedial measures Review with analysed results submitted by ET Review the proposed remedial measures by Contractor Supervise the implementation of remedial measures 	 Implement the agreed proposals Amend proposal if appropriate

Event	ET	IEC	Contractor
Exceedance of Limit Level			
Exceedance for one sample	 Identify source Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurement to confirm findings Increase monitoring frequency to daily if exceedance is due to the Project and continue until the monitoring results reduce to below limit level Assess effectiveness of Contractor's remedial actions and keep EPD and IEC informed of the results 	 Verify the Notification of Exceedance Check monitoring data submitted by ET and Contractor's working methods Discuss with ET and Contractor potential remedial actions Supervise the implementation of remedial measures 	Submit proposals for remedial actions to ISO within 2 weeking above of potitions.
Exceedance for two or more consecutive samples	 Identify source Prepare Notification of Exceedance Inform IEC and EPD the causes and actions taken for the exceedances Discuss with IEC for remedial action required Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and informed of the results Increase monitoring frequency to confirm findings If exceedance stops, cease additional monitoring 	effectiveness	Submit proposals for remedial actions to IEC of notification Implement the agreed proposals

4 Noise Monitoring

4.1 Monitoring Requirement

4.1.1 In accordance with the Updated EM&A manual, noise impact monitoring shall be carried out at 2 monitoring stations NM1a and NM2a once a week during normal construction working hour (0700-1900 Monday to Saturday). The minimum logging interval shall be 30 minutes with average of 6 consecutive Leq (5 mins), L₁₀ and L₉₀ shall also be measured at 5 mins intervals.

4.2 Monitoring Locations, Parameters and Frequency

- 4.2.1 According to the Updated EM&A Manual, two monitoring stations namely NM1 and NM2 are selected for the impact monitoring.
- 4.2.2 A baseline monitoring plan has been submitted to IEC and EPD on 31 May 2022 including the proposal with justification of change of monitoring locations. Due to limited access to the original monitoring locations at NM1 and NM2, the adjusted stations at NM1a and NM2a were agreed with IEC prior to the baseline and impact monitoring. The noise monitoring locations are summarized in **Table 4-1** and shown in **Figure 2**.
- 4.2.3 The detailed monitoring schedule is shown in **Appendix D**. The frequency and duration are shown in **Table 4-2**.

Table 4-1 Noise Monitoring Locations

Monitoring Station	Representative for	Type of Measurement
NM1a	Wo Keng Shan Tsuen	Free field
NM2a	Lin Ma Hang	Free field

Remarks:

The contractor passed correspondence including original monitoring locations specified on the Approved EM&A Manual to the village representatives on 26 April 2022. After a meeting with Ta Kwu Ling District Rural Committee (RC) Chairman, representative from the RC and a few villagers on 1 May 2022, all the Village Heads of Wo Keng Shan Tsuen, Heung Yuen Wai and Lin Ma Hang verbally refused to accept our proposal for installation of dust and / or noise monitoring equipment within or next to their villages, for the baseline & impact monitoring.

NM1 Wo Keng Shan Tsuen & NM2 Lin Ma Hang are the noise monitoring stations for the construction phase EM&A programme as identified in the approved EM&A Manual for the Project. The access to Tung Lo Hang, Heung Yuen Wai and Wo Keng Shan Tsuen were denied. A search for alternative noise monitoring locations (NM1a & NM2a) was carried out during the site visit.

The Baseline Monitoring Plan has been submitted to IEC and EPD including the proposal of change of monitoring locations on 31 May 2022. This arrangement was conducted between baseline and impact monitoring and has been agreed by the Independent Environmental Checker (IEC) and no comments received from EPD. Noise measurement at NM1a & NM2a will be considered as free-field and a correction of +3dB(A) would be made to the noise monitoring results.

Due to the adjustment of the location of NM1 & NM2 to NM1a & NM2a, the measured noise levels at NM1 & NM2 would represent the noise levels at NM1 & NM2.

Table 4-2 Noise Monitoring Parameters, Frequency and Duration

Monitoring Station	Parameter	Frequency and Duration
NM1a and NM2a	$L_{\text{Aeq (30mins)}} \text{ average of 6}$ $consecutive \ L_{\text{Aeq (5min)}}; \ L_{\text{A10(5min)}}$ $\& \ L_{\text{A90(5min)}}$	Once a week during normal construction working hour (0700-1900 Monday to Saturday)

4.3 Monitoring Equipment

- 4.3.1 Integrating Sound Level Meter (SLM) was used for noise impact monitoring. The SLM complied with International Electrotechnical Commission Publications 651:1979 (Type 1) and 804:1985 (Type 1) specifications shall be used for carrying out noise monitoring. The accuracy of the SLM was checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements shall be accepted as valid only if the calibration level from prior to and after the noise measurement agrees to within 1.0dB.
- 4.3.2 A portable wind speed meter was used for measuring wind speeds in m/s.
- 4.3.3 **Table 4-3** summarises the equipment that have been used in the impact noise monitoring programme. The calibration certificates are shown in **Appendix E**.

Table 4-3 Noise Monitoring Equipment

Equipment	Model	Expiry Date
Sound Level Meter	NTi XL2 (S/N: A2A-13661-E0)	12 Aug 2025
Acoustic Calibrator	Rion NC-75 (S/N: 34724245)	23 Jul 2025
Anemometer	UNI-T UT363 (S/N: C222415356)	17 Feb 2027

4.4 Monitoring Methodology

- 4.4.1 The details of noise measurement procedures are described as follows:
 - Free-field measurements were made at the monitoring locations.
 - For free field, the Sound Level Meter was set at a height of 1.2 m above the ground. The battery condition was checked to ensure the proper functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:
 - · Frequency weighting: A
 - · Time weighting: Fast
 - Measurement time: 5 minutes (Leq (30-min) would be determined for daytime noise by calculating the logarithmic average of six Leq (5min) data.)
 - Prior to and after each noise measurement, the meter was calibrated using a
 Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and
 after measurement was more than 1.0 dB, the measurement would be considered
 invalid and repeat of noise measurement would be required after recalibration or
 repair of the equipment.
 - Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
 - At the end of the monitoring period, the Leq, L10 and L90 shall be recorded. In addition, site conditions and noise sources should be recorded on a standard record sheet.
 - All noise monitoring will be conducted with the wind speed not exceeding 5m/s and no gusts exceeding 10m/s.

Calibration & Maintenance

- 4.4.2 The sound level meter, sound calibrator, and anemometer should be properly maintained to ensure that the equipment and a continuous power supply were in good working condition. The sound level meter and sound calibrator will be calibrated annually. The anemometer will be calibrated two years interval in accordance with the HOKLAS Supplementary Criteria No.2. Calibration certificate will be provided after calibration.
- 4.4.3 The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.

4.5 Monitoring Results

4.5.1 The impact noise monitoring results are summarized in **Table 4-4**. The monitoring data together with graphical presentations are presented in **Appendix F** and **Appendix G**.

Table 4-4 Summary of Noise Monitoring Results during Normal Working Hours (07:00-19:00, Monday to Saturday)

	Average Leq, 30min, dB(A) (Range) Noise Monitoring Station			
Month				
	NM1a	NM2a		
Jul 2025	59.7 (58.6 – 60.1)	49.3 (43.6 – 54.6)		
Action Level	When one documented complaint is received			
Limit Level	>75dB(A)			

Remark:

- (1) * A correction of +3 dB(A) was made to the free field measurements
- (2) If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.
- 4.5.2 No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix H**.
- 4.5.3 No particular observations are identified near the monitoring stations during the monitoring period.
- 4.5.4 The Summary of Impact Noise Exceedance are shown in **Table 4-5**.

Table 4-5 Summary of Impact Noise Exceedance during the Reporting Period

Noise Monitoring Station		NM1(a)		NM2(a)	
Level Exceedance Parameters		Action Level	Limit Level	Action Level	Limit Level
LA _{eq} (30mins)	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0

Remarks: * equal to non-project related

4.5.5 No exceedance of Action and Limit Levels of construction noise was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix H**.

4.6 Recommended Mitigation Measures

- 4.6.1 The recommended noise mitigation measures from EIA report are listed as followed:
 - 1. Use of good site practices to limit noise emissions by considering the following:
 - Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;
 - Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;
 - Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;
 - Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;
 - Mobile plant should be sited as far away from NSRs as possible and practicable;
 - Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities.
 - 2. Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.

4.7 Event and Action Plan

4.7.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 4-6** shall be carried out.

Table 4-6 Event and Action Plan for Construction Noise Monitoring

Event	ET	IEC	Contractor
Exceedance of Action Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Report the results of investigation to IEC, and Contractor Discuss with Contractor and IEC for formulate remedial measures Ensure remedial measures are properly implemented Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	Submit noise mitigation proposals to IEC Implement the agreed noise mitigation proposals
Exceedance of Limit Level	 Identify source, investigate the causes of exceedance Prepare Notification of Exceedance Inform IEC and Contractor Repeat measurements to confirm findings Discuss with Contractor and IEC for remedial measures Ensure remedial measures are properly implemented Assess effectiveness of Contractor's remedial actions and keep IEC and EPD informed of the results Have additional monitoring if exceedance is due to the Project. If exceedance stops, cease additional monitoring 	 Verify the Notification of Exceedance Review the analysed results submitted by ET Discuss with ET, and Contractor on the potential remedial actions Review the proposed remedial measures Supervise the implementation of remedial measures 	 Take immediate action to avoid further exceedance Submit proposals for remedial actions to IEC of notification Implement the agreed proposals Resubmit proposals if problem still not under control Stop the relevant portion of works as determined by project proponent until the exceedance is abated.

5 Water Quality Monitoring

5.1 Groundwater Monitoring

5.1.1 Monitoring Requirement

- 5.1.1.1 According to the Updated EM&A Manual, baseline water quality (groundwater) monitoring shall be carried out at the 35 monitoring locations (ED-1 to ED-35), which are subject to changes on the design and modification of the Project. Considering the requirements, objectives and feasibility of conducting the baseline water quality (groundwater) monitoring, a total of 35 monitoring locations (CW-1 to CW-35) are proposed along the waste boundary and access road of the project site. Due to the proposed monitoring locations CW-1 to CW-35 locates along the waste filling boundary of the project site, it can maintain to determine the natural seasonal variation in groundwater levels, effects of any ground water abstraction, identification of hydraulic gradients and variation caused by the construction, operation or aftercare of the project site by Section 5.4.1 of the Updated EM&A Manual. The proposed monitoring locations (CW-1 to CW-35) were approved by IEC on 16 January 2025.
- 5.1.1.2 The baseline groundwater monitoring was commenced on 28 March 2025. The details of baseline groundwater monitoring will be presented in the Baseline Monitoring Report.

5.2 Surface Water Monitoring

5.2.1 Monitoring Requirement

5.2.1.1 In accordance with the Updated EM&A manual, impact surface water quality monitoring was carried out at the two designated surface water discharge points (i.e. WM1 and WM2) for once per month from commencement of construction works of the Project.

5.2.2 Monitoring Locations, Parameters and Frequency

- 5.2.2.1 Impact surface water monitoring was carried out at WM1 and WM2 during the reporting period. The monitoring locations are indicated in **Table 5-1** and **Figure 2**.
- 5.2.2.2 The monitoring parameters, frequency and duration of surface water quality monitoring are summarized in **Table 5-2**. Detailed monitoring schedule is presented in **Appendix D**.

Table 5-1 Surface Water Quality Monitoring Locations

Monitoring Station	Location	Coordinates (HK Grid)	
Monitoring Station	Location	Easting	Northing
WM1	Upstream of Lin Ma Hang River	836665	845020
WM2	Ping Yuen River	835592	844186

Table 5-2 Surface Water Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency
pH, Electrical conductivity, DO, Turbidity, SS, Alkalinity, COD, BOD ₅ , TOC, Ammonia-nitrogen, TKN, Nitrate, Sulphate, Sulphite, Phosphate, Chloride, Sodium, Mg, Ca, K, Fe, Ni, Zn, Mn, Cu, Pb, Cd, Coliform Count, Oil and Grease	Once per month

5.2.3 Monitoring Equipment

5.2.3.1 The measurements of pH, electrical conductivity (EC), DO, turbidity, water temperature and air temperature were undertaken in situ. In situ monitoring instruments in compliance with the specifications listed under Section 5.5 of the Updated EM&A Manual were used to undertake the surface water quality monitoring for the Project. **Table 5-3** summarises the equipment used in the impact surface water quality monitoring works. Copies of the calibration certificates are attached in **Appendix E**.

Table 5-3 Surface Water Quality Monitoring Equipment

Equipment	Model	Expiry Date
Water Quality Meter	YSI ProDSS (S/N: 22C106561)	16 Sep 2025
Water Flow Meter	Global Water FP111 (S/N: 22K100859)	10 Feb 2026

5.2.4 Summary of Surface Water Quality Monitoring Procedure

Operational/ Analytical Procedures

- 5.2.4.1 In general, water samples were collected from within 500 mm of the water surface. Water was collected by a small clean open-mouthed bucket with the lip pointing upstream. Usually, water was then transferred to the sample bottles until they were filled to the top with no remaining air space before the lid was securely screwed on. For samples that were preserved with acid or alkalis prior to transport to the laboratory, the samples bottles were filled to the level specified by the analytical laboratory.
- 5.2.4.2 Analyses shall be carried out in accordance with methods described in ASTM or APHA AWWA-WEF Standard.

Laboratory Analytical Methods

5.2.4.3 The testing of parameters presented in **Table 5-4** for all stations was conducted by ALS Technichem (HK) Pty Ltd. (HOKLAS Registration No. 066). Comprehensive quality assurance and control procedures were in place in order to ensure quality and consistency in results. The detection limits are provided in **Table 5-4.**

Table 5-4 Surface Water Monitoring Detection Limits and Limit of Reporting

Table 5-4 Surface	Water Monitoring I	Detection Limits and I	_imit of Reporting
Parameters	Detection Limit (in Updated EM&A Manual)	Limit of Reporting	Method Reference
pН	0.1	0.1	APHA 4500 H+ B
Electrical conductivity	1 mS/cm	1 mS/cm	APHA 2510 B
Alkalinity	1 mg/L	1 mg/L	APHA 2320 B
COD	10 mg/L	5 mg/L	APHA 5220 C
BOD ₅	3 mg/L	2 mg/L	APHA 5210 B
TOC	1 mg/L	1 mg/L	APHA 5310 B
SS	0.1 mg/L	0.1 mg/L	APHA 2540 D
Ammonia-nitrogen	0.2 mg/L	0.01 mg/L	APHA 4500 NH3 G
TKN	0.4 mg/L	0.1 mg/L	APHA 4500Norg: D
Nitrate	0.5 mg/L	0.01 mg/L	APHA 4500 NO3 I
Sulphate	5 mg/L	1 mg/L	USEPA 375.4
Sulphite	2 mg/L	2 mg/L	APHA 4500 SO3 B
Phosphate	0.01 mg/L	0.01 mg/L	APHA 4500-P B & F
Chloride	0.5 mg/L	0.5 mg/L	USEPA 325.1
Sodium	50 mg/L	50 mg/L	USEPA 6010C
Mg	50 mg/L	50 mg/L	USEPA 6010C
Ca	50 mg/L	50 mg/L	USEPA 6010C
K	50 mg/L	50 mg/L	USEPA 6010C
Fe	50 mg/L	10 mg/L	USEPA 6010C
Ni	1 mg/L	1 mg/L	USEPA 6020A
Zn	10 mg/L	10 mg/L	USEPA 6020A
Mn	1 mg/L	1 mg/L	USEPA 6020A
Cu	1 mg/L	1 mg/L	USEPA 6020A
Pb	1 mg/L	1 mg/L	USEPA 6020A
Cd	0.2 mg/L	0.2 mg/L	USEPA 6020A
Coliform Count	1 cfu/ 100mL	1 cfu/ 100mL	DoE section 7.8, 7.9.4.1 & 3
Oil and Grease	5 mg/L	5 mg/L	APHA 5520 B

QA/ QC Requirements

5.2.4.4 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at the intervals according to manufacturer's requirement throughout all stages of the surface water quality monitoring programme. Calibration of temperature, DO, salinity, pH and turbidity is conducted in three-month interval. Calibration of water flow is conducted annually. Responses of sensors and electrodes were checked with certified standard solutions before each use. Calibration for a DO meter was carried out before measurement according to the instruction manual of the equipment model. For the on-site calibration of field equipment, the requirements of the BS 1427:2018, "Guide to on-site test methods for the analysis of waters" was observed.

Decontamination Procedures

5.2.4.5 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed with clean distilled water after each sampling location.

Sampling Management and Supervision

5.2.4.6 All sampling bottles were labelled with the sample ID (including the indication of sampling station), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory. The laboratory determination works started within 24 hours after collection of water samples.

Quality Control Measures for Sample Testing

- 5.2.4.7 The samples testing was performed by ALS Technichem (HK) Pty Ltd. The following quality control programme was performed by the laboratory:
 - · One method blank; and
 - One sample duplicate.

5.2.5 Monitoring Results

- 5.2.5.1 Impact surface water quality monitoring was conducted at WM1 & WM2 on 15 July 2025. No adverse weather was observed during reporting period. The detailed monitoring schedule is shown in **Appendix D**.
- 5.2.5.2 The summary of monitoring results is presented in **Table 5-5**. Detailed monitoring results at each monitoring station and graphical presentations of surface water quality (DO, SS and Turbidity) at the monitoring stations are given in **Appendix F** and **Appendix G**.
- 5.2.5.3 No particular observations are identified near the monitoring stations during the monitoring period.

Table 5-5 **Summary of Impact Surface Water Monitoring Results**

	Monitoring Station					
Monitoring	WM1			WM2		
Parameter(s)	Monitoring Results	Action Level	l imit l aval		Action Level	Limit Level
рН	6.8	>7.7	>7.8	6.9	>7.6	>7.7
DO in mg/L	7.5	<7.4	<4	7.7	<5	<4
Turbidity in NTU	4.7	>9.2	>9.5	62.6	>108.3	>108.9
Electrical Conductivity in µS/cm	55			166		
SS in mg/L	4.4	>9.7	>11.4	65.7	>94.5	>94.7
Alkalinity in mg/L	12			37		
COD in mg/L	8			6		
BOD₅ in mg/L	<2			<2		
TOC in mg/L	3			2		
Ammonia-nitrogen in mg/L	0.05			0.09		
TKN in mg/L	0.4			0.2		
Nitrate in mg/L	0.04			0.22		
Sulphate in mg/L	2			24		
Sulphite in mg/L	<2					
Phosphorus in mg/L	<0.01			<0.01		
Chloride in mg/L	6			5		
Sodium in µg/L	6060			5340		
Magnesium in μg/L	440			1410		
Calcium in µg/L	2580			19100		
Potassium in µg/L	620			3290		
Iron in μg/L	340					
Nickel in µg/L	<1			<1		
Zinc in µg/L	14			26		
Manganese in µg/L	17			887		
Copper in µg/L	3.0			2		
Lead in µg/L	<1			4		
Cadmium in µg/L	<0.2			<0.2		
Coliform Count in cfu/100mL	4700			4300		
Oil and Grease in mg/L	<5			<5		

Remarks:

The Summary of Impact Surface Water Quality Exceedance are shown in Table 5-6. 5.2.5.4

Orange Text equals to exceed the Action Level. Red Text equals to exceed the Limit Level.

Table 5-6 Summary of Impact Surface Water Quality Exceedance during the Reporting Period

Surface Water Quality Monitoring Station		WM1		WM2	
Level Exceedance		Action Level	Limit Level	Action Level	Limit Level
Parameters					
рН	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
DO	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
Turbidity	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
SS	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0

Remarks: * equal to non-project related

5.2.5.5 No exceedance of Action and Limit Level of surface water quality at designated monitoring statins was recorded during the reporting period. The Notification of Environmental Quality Limits Exceedance is presented in **Appendix H**.

5.2.6 Recommended Mitigation Measure

- 5.2.6.1 The recommended surface water mitigation measures from EIA report are listed as followed:
 - Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.
 - The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water flows.
 - The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.
 - All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads.
 - Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts.
 - Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.

5.2.7 Implementation of the Temporary Surface Water Drainage System (TSWDS)

5.2.7.1 The site inspection and audits were carried out by ER, IC, ET & Contractor on weekly basis (IEC on monthly basis) to monitor the construction progress, maintenance performance and effectiveness of temporary surface water drainage system in the

Project Site to fulfil the FEP Condition 2.13, EP Condition 2.15 and the Section 5.2.1.1 of the Updated EM&A Manual. The joint environmental site inspection records are shown in **Appendix K**.

5.2.7.2 All construction site runoff would be treated by silt removal facilities to fulfil the requirement of WPCO licenses from the project. Construction site runoff from the project after treatment was discharged to Ping Yuen River. The surface water monitoring results at WM2 (after the discharge point of silt removal facilities) can reflect the water quality at Ping Yuen River during the reporting period.

5.2.8 Event and Action Plan

5.2.8.1 Should non-compliance of the criteria occurs, action in accordance with the action plan in **Table 5-7** shall be carried out.

Table 5-7 Event and Action Plan for Water Quality

Event	ET	IEC	Contractor
Action level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Repeat measurement on next day of exceedance 	Verify Notification of Exceedance Check monitoring data and Contractor's working methods	Rectify unacceptable practice Amend working methods if appropriate
Action level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor Check monitoring data, all plant, equipment and Contractor's working methods Discuss with Contractor and IEC for remedial measures Ensure mitigation measures are implemented Increase the monitoring frequency to daily until no exceedance of Action level Repeat measurement on next day of exceedance 	 Verify Notification of Exceedance Check monitoring data and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Submit proposal of additional mitigation measures to IEC of notification Implement the agreed mitigation measures Amend proposal if appropriate

Event	ET	IEC	Contractor
Limit Level being exceeded by one sampling day	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC and Contractor; Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted By ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures
Limit level being exceeded by two or more consecutive sampling days	 Repeat in situ measurement to confirm findings Identify source(s) of impact Prepare Notification of Exceedance Inform IEC, contractor and EPD Check monitoring data, all plant, equipment and Contractor's working methods Discuss mitigation measures with IEC and Contractor Ensure mitigation measure are implemented 	 Verify Notification of Exceedance Check monitoring data submitted by ET and Contractor's working method Discuss with ET and Contractor on possible remedial actions Review the proposed mitigation measures Supervise the implementation of mitigation measures 	 Critically review the working method Rectify unacceptable practice Take immediate corrective actions to avoid further exceedance Submit proposal of mitigation measures to IEC Implement the agreed mitigation measures Resubmit proposals if problem still not under control Slow down or to stop relevant activity until exceedance is abated

6 Waste Management

- 6.1.1 Wastes generated from this Project include inert construction and demolition (C&D) materials and non-inert C&D materials. Non-inert C&D materials were made up of general refuse, steels and paper/cardboard packaging materials. Steel materials generated from the Project were also grouped into non-inert C&D materials as the materials were not disposed of with other inert C&D materials. With reference to relevant handling records and trip tickets of this Project (Updated to 28 Jul 2025), the quantities of different types of waste generated from 1 to 28 Jul 2025 are summarised in **Appendix J**.
- 6.1.2 A total of 63,631.4 tonnes of C&D materials was reused in the project site from 1 to 28 Jul 2025. A total of 105,641 tonnes of C&D materials was reused at alternative disposal ground (NENT Landfill) from 1 to 28 Jul 2025. A total of 948.55 tonnes of C&D materials was imported fill from 1 to 28 Jul 2025. No Yard waste (collected to Y-Park) was generated from 1 to 28 Jul 2025. A total of 263.36 tonnes of general refuse and a total 600.77 tonnes of No non-recyclable yard waste was generated from 1 to 28 Jul 2025. The general refuse generated from the Project were disposed of at the NENT Landfill.
- 6.1.3 The recommended waste management mitigation measures from EIA report are listed as followed:
 - Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and verified in accordance with DEVB TC(W) No. 6/2010.
 - Concrete and masonry should be used as general fill and steel reinforcement bars can be used by scrap steel mills.
 - Proper areas should be designated for waste segregation and storage wherever site conditions permit.
 - Maximise the use of reusable steel formwork to reduce the amount of C&D material.
 - Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement.
 - On-site sorting and segregation facility of all type of wastes is considered as one
 of the best practice in waste management and hence, should be implemented in
 all projects generating construction waste.
 - The sorted public fill and C&D waste should be properly reused.
 - Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather.

7 Landfill Gas Monitoring

7.1 Monitoring Requirement during Construction

Monitoring for Construction Works

- 7.1.1 Intrinsically safe portable gas detectors should be used during or when working in any confined spaces, which have the potential for presence of LFG and risk of explosion or asphyxiation. The monitoring equipment should alarm, both audibly and visually, when the concentrations of the following gases were exceeded:
 - CH₄: >10% Lower Explosion Limit (LEL);
 - CO₂: >0.5%; and
 - O₂: <18% by volume.

7.2 Monitoring Locations

- 7.2.1 During the construction works within the NENT Landfill Extension site with excavation of 1m deep or more, LFG concentrations should be monitored before entry and periodically during the progress of works. If drilling is required, the procedures for safety management and working procedures as stipulated in EPD's Landfill Gas Hazard Assessment Guidance Note should be strictly adopted.
- 7.2.2 The monitoring frequency and areas to be monitored should be set down prior to commencement of groundworks by the Safety Officer. All measurements in excavations should be made with the monitoring tube located not more than 10mm from the exposed ground surface. Monitoring of excavations should be undertaken as follows:
- 7.2.3 For excavation works deeper than 1m, measurements should be made:
 - at ground surface prior to excavation;
 - immediately before any worker enters the excavation;
 - at the beginning of each working day for the entire period the excavation remains open; and
 - periodically through the working day whilst workers are in the excavation.
- 7.2.4 For excavation between 300mm and 1m deep, measurements should be made:
 - directly after the excavation has been completed; and
 - periodically whilst the excavation remains open.
- 7.2.5 For excavations less than 300mm deep, monitoring may be omitted, at the discretion of the Safety Officer.
- 7.2.6 The locations of LFG monitoring locations during reporting period are shown in **Table 7-1**. The Site formation layout plan is shown in **Figure 2** and the Layout of LFG monitoring locations is presented in **Figure 3**.

Table 7-1 Locations of LFG Monitoring during Reporting Period

Monitoring Location	Type of works
Portion A +50 mpD to 70 mpD Platform	Excavation Works
Portion B2/E1	Excavation Works

7.3 Monitoring Equipment

7.3.1.1 Gas Detector was used for carrying out LFG monitoring for Construction Works. **Table 7-2** summarises the equipment that were used in the LFG monitoring programme. The calibration certificates are shown in **Appendix E**. The detection limits are provided in **Table 7-3**.

Table 7-2 LFG Monitoring Equipment

Monitoring Parameters	Equipment	Model
CH ₄ , CO ₂ & O ₂	Gas Analyser	Blackline Safety G7C-EU2 (S/N: 3571220922)

Table 7-3 Landfill Gas Monitoring Detection Limits

Parameters	Detection Limit
CH₄	1% LEL
O ₂	0.1%
CO ₂	0.1%

7.4 Event and Action Plan (EAP)

7.4.1 Should non-compliance of the criteria occur, action in accordance with the action plan in **Table 7-4** shall be carried out.

Table 7-4 Event and Action Plan for the Landfill Gas Monitoring during Construction Phase

Parameter	Monitoring Result	Action	
	Action Level <19% O ₂	Ventilate trench/void to restore O ₂ to >19%	
Oxygen (O ₂)	Limit Level <18% O ₂	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore O ₂ to >19%	
	Action Level >10% LEL*	Prohibit hot works Increase ventilation to restore CH ₄ to <10% LEL	
Methane (CH₄)	Limit Level >20% LEL*	Stop works Evacuate personnel/prohibit entry Increase ventilation to restore CH ₄ to <10% LEL	
Carbon dioxide (CO ₂)	Action Level** >0.5%** CO ₂	Ventilate to restore CO ₂ to <0.5%	
	Limit Level >1.5% CO ₂	Stop works Evacuate personnel / prohibit entry Increase ventilation to restore CO ₂ to <0.5%	

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

Depending on the baseline CO₂ levels, the Action Level at a particular location will be changed.

^{**} This Action Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

7.5 Monitoring Results

- 7.5.1 The LFG monitoring was carried out two rounds (at the beginning of works in the morning and after lunch) at the working days. The monitoring period of each round of LFG monitoring is around 5 minutes.
- 7.5.2 The LFG monitoring was conducted at Portion A +50 mpD to 70 mpD Platform and Portion B2/E1 during the reporting period (Conducted on working days). The LFG monitoring results are summarized in **Table 7-5** & **Table 7-6**.

Table 7-5 Summary of LFG Monitoring Results

Table 7-5	Summary of LFG Monitoring Results					
LFG			Monitorin	g Parameter(s)		
Monitoring	Monitoring Date	CH₄ in %	LEL in %/v	CO₂ in %	O ₂ in %	
Station	Date		Average Mo	onitoring Results		
	2 Jul 2025	0	0	0	20.1	
	3 Jul 2025	0	0	0	20.0	
	4 Jul 2025	0	0	0	20.0	
	5 Jul 2025	0	0	0	20.0	
	7 Jul 2025	0	0	0	20.1	
	8 Jul 2025	0	0	0	20.1	
	9 Jul 2025	0	0	0	20.0	
	10 Jul 2025	0	0	0	20.0	
	11 Jul 2025	0	0	0	20.1	
	12 Jul 2025	0	0	0	20.0	
	14 Jul 2025	0	0	0	20.0	
	15 Jul 2025	0	0	0	20.1	
Portion A +50 mpD to 70	16 Jul 2025	0	0	0	20.1	
mpD Platform	17 Jul 2025	0	0	0	20.0	
·	18 Jul 2025	0	0	0	20.1	
	19 Jul 2025	0	0	0	20.0	
	21 Jul 2025	0	0	0	20.0	
	22 Jul 2025	0	0	0	20.0	
	23 Jul 2025	0	0	0	20.1	
	24 Jul 2025	0	0	0	20.0	
	25 Jul 2025	0	0	0	20.0	
	26 Jul 2025	0	0	0	20.1	
	28 Jul 2025	0	0	0	20.1	
	29 Jul 2025	0	0	0	20.1	
	30 Jul 2025	0	0	0	20.0	
	31 Jul 2025	0	0	0	20.0	
Action	Level	>10% LEL		>0.5%** CO ₂	<19%	
Limit	Level	>20% LEL		>1.5% CO ₂	<18%	

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

^{**} This Limit Level of CO₂ at 0.5% is set for reference only, assuming no CO₂ emission from a particular location.

Table 7-6 Summary of LFG Monitoring Results

Table 7-6	Summary	nmary of LFG Monitoring Results					
LFG	Monitoring			g Parameter(s)			
Monitoring	Date	CH₄ in %	LEL in %/v	CO₂ in %	O ₂ in %		
Station		Average Monitoring Results					
	2 Jul 2025	0	0	0	20.1		
	3 Jul 2025	0	0	0	20.0		
	4 Jul 2025	0	0	0	20.0		
	5 Jul 2025	0	0	0	20.0		
	7 Jul 2025	0	0	0	20.1		
	8 Jul 2025	0	0	0	20.1		
	9 Jul 2025	0	0	0	20.0		
	10 Jul 2025	0	0	0	20.0		
	11 Jul 2025	0	0	0	20.1		
	12 Jul 2025	0	0	0	20.0		
	14 Jul 2025	0	0	0	20.0		
	15 Jul 2025	0	0	0	20.0		
Portion	16 Jul 2025	0	0	0	20.1		
B2/E1	17 Jul 2025	0	0	0	20.0		
	18 Jul 2025	0	0	0	20.1		
	19 Jul 2025	0	0	0	20.0		
	21 Jul 2025	0	0	0	20.0		
	22 Jul 2025	0	0	0	20.0		
	23 Jul 2025	0	0	0	20.1		
	24 Jul 2025	0	0	0	20.0		
	25 Jul 2025	0	0	0	20.0		
	26 Jul 2025	0	0	0	20.1		
	28 Jul 2025	0	0	0	20.1		
	29 Jul 2025	0	0	0	20.1		
	30 Jul 2025	0	0	0	20.0		
	31 Jul 2025	0	0	0	20.0		
Action	n Level	>10% LEL		>0.5%** CO ₂	<19%		
Limit	Level	>20% LEL		>1.5% CO ₂	<18%		
* LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion							

^{*} LEL: Lower Explosive Limit - concentrations in air below which there is not enough fuel to continue an explosion.

7.5.3 The Summary of Landfill Gas Exceedance are shown in **Table 7-7**.

^{**} This Limit Level of CO_2 at 0.5% is set for reference only, assuming no CO_2 emission from a particular location.

Table 7-7 Summary of Landfill Gas Exceedance during the Reporting Period

Landfill Gas Monitoring Station			50 mpD to 70 latform	Portion B2/E1		
	Level Exceedance	Action Level Limit Level		Action Level	Limit Level	
Paramet	ers					
CH₄	Exceedance Date	-	-	-	-	
	Exceedance Count	0	0	0	0	
CO ₂	Exceedance Date	-	-	-	-	
	Exceedance Count	0	0	0	0	
O ₂	Exceedance Date	-	-	-	<u>-</u>	
	Exceedance Count	0	0	0	0	

Remarks: * equal to non-project related

- 7.5.4 No exceedance of Action and Limit Levels of LFG was recorded during the reporting period. Therefore, there was no record of Notification of Environmental Quality Limits Exceedance in the **Appendix H**.
- 7.5.5 No effect that arose from the other special phenomena and work progress of the concerned site was noted during the current monitoring month.

7.6 Recommended Mitigation Measures

- 7.6.1 The recommended landfill gas mitigation measures from EIA report are listed as followed:
 - Special LFG precautions should be taken due to close proximity of NENT landfill
 extension site to existing landfill to avoid potential hazards of LFG exposure (ignition,
 explosion, asphyxiation, toxicity).
 - Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during excavation works.
 - No smoking or burning should be permitted on-site.
 - Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.
 - No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.
 - Adequate fire fighting equipment should be provided on-site.
 - Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark arrestors.
 - Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.
 - 'Permit to Work' system should be implemented.
 - Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.

8 Landscape and Visual

8.1 Monitoring Requirement

- 8.1.1 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.
- 8.1.2 All relevant environmental mitigation measures listed in the approved EIA Report and the Updated EM&A Manual and their implementation status are summarised in **Appendix L**.

8.2 Result and Observation

- 8.2.1 Measures to mitigate the landscape and visual impacts during the construction phase has been checked to ensure compliance with the intended aims of the measures within the reporting period. The progress of the engineering works are regularly reviewed on site to identify the earliest practical opportunities for the landscape works to be undertaken.
- 8.2.2 In order to monitor the landscape and visual impact after providing mitigation measures effectively, all the specified and affected LCAs, LRs and VSRs should be monitored. Implementation of the mitigation measures during construction phase of the Project has been monitored through the regular site inspection/audit.

9 Cultural Heritage

- 9.1.1 The Mitigation measures for preservation of the cultural landscape feature located within the project area was conducted before commencement of construction of the project based on the requirement of Survey Report and Mapping Records for Boulder Paths BP1 & 2 & Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX.
- 9.1.2 The survey and mapping works carried out on 23 August 2022 and the verification works carried out on 23 August 2022 confirmed that both 2 boulder paths BP1 and BP2 are fall outside the site boundary and the Project area.
- 9.1.3 All the affected graves within the waste boundary have been removed in accordance with section 119(1) of the Public Health and Municipal Services Ordinance (Cap 132). Removal of the graves as shown on Figure 2 attached to the FEP was proven by the visit of graves on 8 July 2022. All the graves as shown on Figure 2 attached to the FEP were abandoned and removed and no mitigation or preservation measures is necessary.
- 9.1.4 The Survey Report and Mapping Records for Boulder Paths BP1 & 2 was certified by ET on 10 Oct 2022, was verified by IEC and submitted to EPD on 12 Oct 2022. The Conditions of G2, G4, G5 G6, G7, G8, G14, G15, G25, G26 and G27 within NENTX was certified by ET, was verified by IEC and submitted to EPD on 15 Oct 2022. No later than four weeks before commencement of construction of the project in accordance with Condition 2.4 of the FEP-02/292/2007.
- 9.1.5 Implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit. The permanent fencing locations are shown in **Appendix M**. In case of any presence of undiscovered grave during construction phase, AMO will be informed as soon as possible.

10 Ecological Monitoring

- 10.1.1 The post-transplantation monitoring had been completed in October 2023. No further post-transplantation monitoring will be conducted in accordance with the requirement of the approved Transplantation Proposal for Plant Species of Conservation Importance (Rev.1).
- 10.1.2 The post-translocation monitoring had been completed in July 2023. No further post-translocation monitoring will be conducted in accordance with the requirements of the Revised Translocation Proposal for the Endemic Freshwater Crab Somanniathelphusa zanklon.
- 10.1.3 The details of requirements, monitoring results and site inspection with photos for the post-translocation monitoring and post-transplantation monitoring would be reported separately.
- 10.1.4 The milestone of the ecological monitoring is presented in **Table 10-1**. The softcopies of the submissions are provided in https://www.nentx-ema.com/ep-submissions/.

Table 10-1 Milestone of the Ecological Monitoring

Type of Monitoring	Monitoring Event No.	Monitoring Date	
Post-transplantation	1 st	24 Nov 2022	
Monitoring	2 nd	9 Dec 2022	
	3 rd	21 Dec 2022	
	4 th	13 Jan 2023	
	5 th	26 Jan 2023	
	6 th	8 Feb 2023	
	7 th	24 Feb 2023	
	8 th	20 Mar 2023	
	9 th	21 Apr 2023	
	10 th	12 May 2023	
	11 th	16 Jun 2023	
	12 th	18 Jul 2023	
	13 th	11 Aug 2023	
	14 th	15 Sep 2023	
	15 th	13 Oct 2023	
Post-translocation	1 st (Aug 2022)	29 Aug 2022	
Monitoring	2 nd (Sep 2022)	28 Sep 2022	
	3 rd (Oct 2022)	28 Oct 2022	
	4 th (Nov 2022)	22 Nov 2022	
	5 th (Dec 2022)	29 Dec 2022	
	6 th (Jan 2023)	30 Jan 2023	
	7 th (Feb 2023)	24 Feb 2023	
	8 th (Mar 2023)	20 Mar 2023	
	9 th (Apr 2023)	19 Apr 2023	
	10 th (May 2023)	17 May 2023	
	11 th (Jun 2023)	7 Jun 2023	
	12 th (Jul 2023)	12 Jul 2023	

11 Site Inspection and Audit

- 11.1.1 Site Inspection and audits were carried out by ET on weekly basis to monitor the implementation of proper environmental management practices and mitigation measures in the Project Site.
- 11.1.2 Weekly ET environmental site inspections were conducted in the reporting period on 08, 14, 21 & 28 July 2025. A joint environmental site inspection was carried out by the representatives of the ER, the Contractor, IEC and the ET on 21 July 2025. The joint environmental site inspection records are shown in Appendix K. There was no noncompliance recorded during the site inspections.
- 11.1.3 Major findings and recommendations are summarized as follows:

08 Jul 2025

Observation(s):

- 1. Accumulation of waste was found at Portion D. The Contractor was advised to increase the frequency of waste disposal at Portion D.
- Standing water was found at Portion D and the drip tray under the generator at temporary site office of Portion E3. The Contractor was recommended to fix the damaged water hose, direct the standing water to silt removal facility for treatment and clean the standing water at drip tray under the generator at the temporary site office of Portion E3.
- Access road at the temporary site office of Portion E3 was dry and dust dispersion was found. The Contractor was advised to increase the frequency of watering at access road of temporary site office of Portion E3 to avoid dust dispersion.

Reminder(s):

1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.

14 Jul 2025

Observation(s):

1. The standing water was found at drip tray under the generator of temporary site office. The Contractor was recommended to remove the standing water at drip tray regularly, especially after rain event.

Reminder(s):

1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.

21 Jul 2025

Observation(s):

- 1. Standing water was found at the U-channel of Portion A. The Contractor was recommended to direct the standing water into silt removal facility for treatment.
- Accumulated waste and standing water were found at the boundary of Portion A's process building. The Contractor was advised that general waste and C&D waste should be placed into enclosed bins and waste skips and to direct the standing water into silt removal facility for treatment.

- 3. Without covering open cement bags were found at 1/F of Portion A's process building. The Contractor was recommended that open cement bags should be covered with impervious sheet when not in use.
- Without covering the exposed slope was found at Portion E3. The Contractor was advised that the exposed slope at Portion E3 should be covered with impervious sheet.

Reminder(s):

1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.

28 Jul 2025

Observation(s):

- Accumulated waste was found at Portion A. The Contractor was recommended to increase the waste separation facilities with proper label for paper, aluminium cans & plastic bottles and with proper label waste skips for C&D wastes. In addition, the accumulated waste should be cleaned up regularly.
- 2. Access road was dry and dust dispersion was found at Portion A & E4. The Contractor was advised to increase the frequency of watering to minimise the dust dispersion at access road.
- 3. Without cover was found at the enclosed rubbish bin of Temporary site office. The Contractor was advised to increase the cover for the enclosed rubbish bin.

Reminder(s):

- 1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.
- 11.1.4 No general site inspection was conducted by Environmental Protection Department-Regional Office (North) (EPD-RNG) during the reporting period.

12 Environmental Non-Conformance

12.1 Summary of Monitoring Exceedance

Air Quality, Noise Monitoring, Surface Water Quality & Landfill Gas Monitoring

- 12.1.1 No exceedance of the Action and Limit Levels were recorded at designated monitoring stations during the reporting period. The Notification of Environmental Quality Limits Exceedance is presented in **Appendix H**.
- 12.1.2 The Summary of Impact 1-hr & 24-hr TSP Exceedance are shown in Table 12-1.

Table 12-1 Summary of Impact 1-hr & 24-hr TSP Exceedance during the Reporting Period

Dust Monitoring Station		AM1		AM2		AM3	
Level Exceedance Parameters		Action Level	Limit Level	Action Level	Limit Level	Action Level	Limit Level
1-hr TSP	Exceedance Date	-	-	-	-	-	-
	Exceedance Count	0	0	0	0	0	0
24-hr TSP	Exceedance Date	-	-	-	-	-	-
	Exceedance Count	0	0	0	0	0	0

Remarks: * equal to non-project related

12.1.3 The Summary of Impact Noise Exceedance are shown in **Table 12-2**.

Table 12-2 Summary of Impact Noise Exceedance during the Reporting Period

Noise Monitoring Station		NM1(a)		NM2(a)	
Level Exceedance Parameters		Action Level	Limit Level	Action Level	Limit Level
LA _{eq} (30mins)	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0

Remarks: * equal to non-project related

12.1.4 The Summary of Impact Surface Water Quality Exceedance are shown in Table 12-3.

Table 12-3 Summary of Impact Surface Water Quality Exceedance during the Reporting Period

Surface Water Quality Monitoring Station		WM1		WM2	
	Level Exceedance	Action Level	Limit Level	Action Level	Limit Level
Parameters					
рН	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
DO	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
Turbidity	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0
SS	Exceedance Date	-	-	-	-
	Exceedance Count	0	0	0	0

Remarks: * equal to non-project related

12.1.5 The Summary of Landfill Gas Exceedance are shown in **Table 12-4**.

Table 12-4 Summary of Landfill Gas Exceedance during the reporting period

Landfill Gas Monitoring Station			mpD to 70 mpD form	Portion B2 / E1		
	Level Exceedance	Action Level	Limit Level	Action Level	Limit Level	
Para	meters					
CH₄	Exceedance Date	-	-	-	-	
	Exceedance Count	0	0	0	0	
CO ₂	Exceedance Date	-	-	-	-	
	Exceedance Count	0	0	0	0	
O ₂	Exceedance Date	-	-	<u>-</u>	-	
	Exceedance Count	0	0	0	0	

Remarks: * equal to non-project related

12.2 Summary of Environmental Non-Compliance

12.2.1 No non-compliance event was recorded during the reporting period.

12.3 Summary of Environmental Complaint

12.3.1 No environmental complaint was recorded during the reporting period. The cumulative statistics on environmental complaints are presented in **Table 12-5**.

Table 12-5 Cumulative Statistics on Environmental Complaints

Reporting Period		Environmental Aspects					
		Air Quality	Noise	Water Quality	Waste	Ecology	
I.J. 2025	Complaint Date	-	-	-	-	-	
Jul 2025	No. of Complaint	0	0	0	0	0	
Reporting Period Total		0	0	0	0	0	
Accumulate of project		1*	0	7(1*)	0	0	

Remarks:

12.3.2 Cumulative complaint / enquiry log, Summaries of complaints and enquiries are presented in **Appendix N**.

12.4 Summary of Environmental Summons and Successful Prosecution

12.4.1 No summons and successful prosecution were received during the reporting period.

^{1. *} equal to non-project related after the investigation.

^{2. #} equal to the complaint under the investigation.

13 Implementation Status on Environmental Mitigation Measures

13.1 General

13.1.1 The Contractor has generally implemented part of environmental mitigation measures and requirements as stated in the EIA Report, the EP and Updated EM&A Manual and the contract documents. The implementation status during the reporting period is summarized in **Appendix L**.

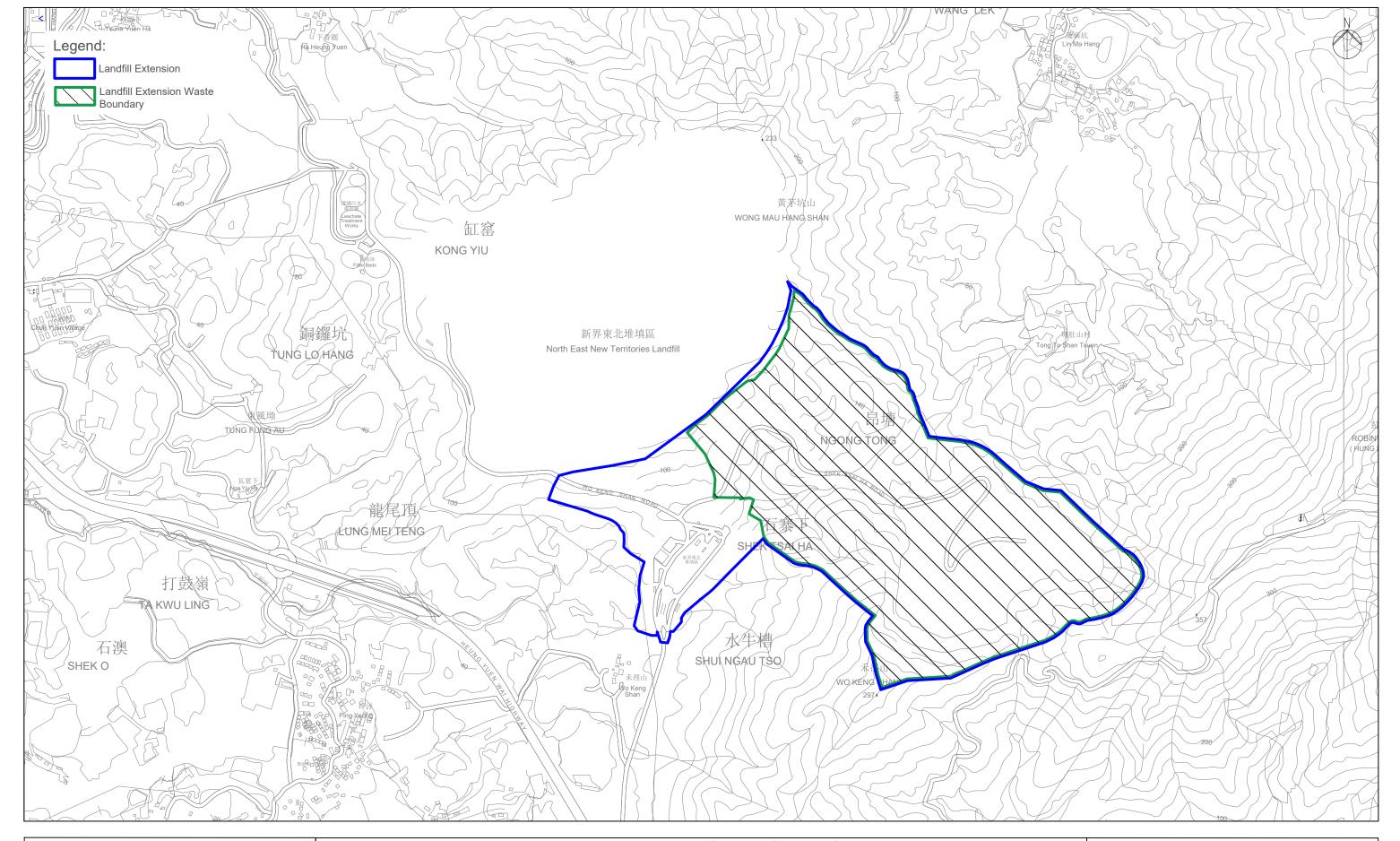
14 Future Key Issues

14.1 Key Issues for the Coming Month

- 14.1.1 Works to be undertaken for the coming monitoring periods are summarized below. Detailed construction activities and locations are summarized in **Appendix A**.
 - Material loading and unloading, backfilling of material and site traffic at Portion A, SBA to alternative disposal ground
 - Construction of site buildings at Portion D
 - Site clearance at Portion A, B2/E1, E3-1 & E4
 - Installation of permanent fencing at Portion A, B1 & E4
 - Site formation at Portion A, B2/E1, E3-1 & E4
 - Tree felling at whole site
 - Shotcreting (Permanent and Temporary) at whole site
 - Soil nail installation at Portion A, B2/E1 & E4
 - Installation of minipile at Portion A
 - Construction of RE wall at Portion E3-1
- 14.1.2 Potential environmental impacts arising from the above construction activities are mainly associated with air quality, construction noise, water quality, waste management, landfill gas monitoring, landscape and visual, cultural heritage and ecology.

14.2 Monitoring Schedule for the Next Month

14.2.1 The tentative schedule of environmental monitoring for the next reporting period is presented in **Appendix D**.

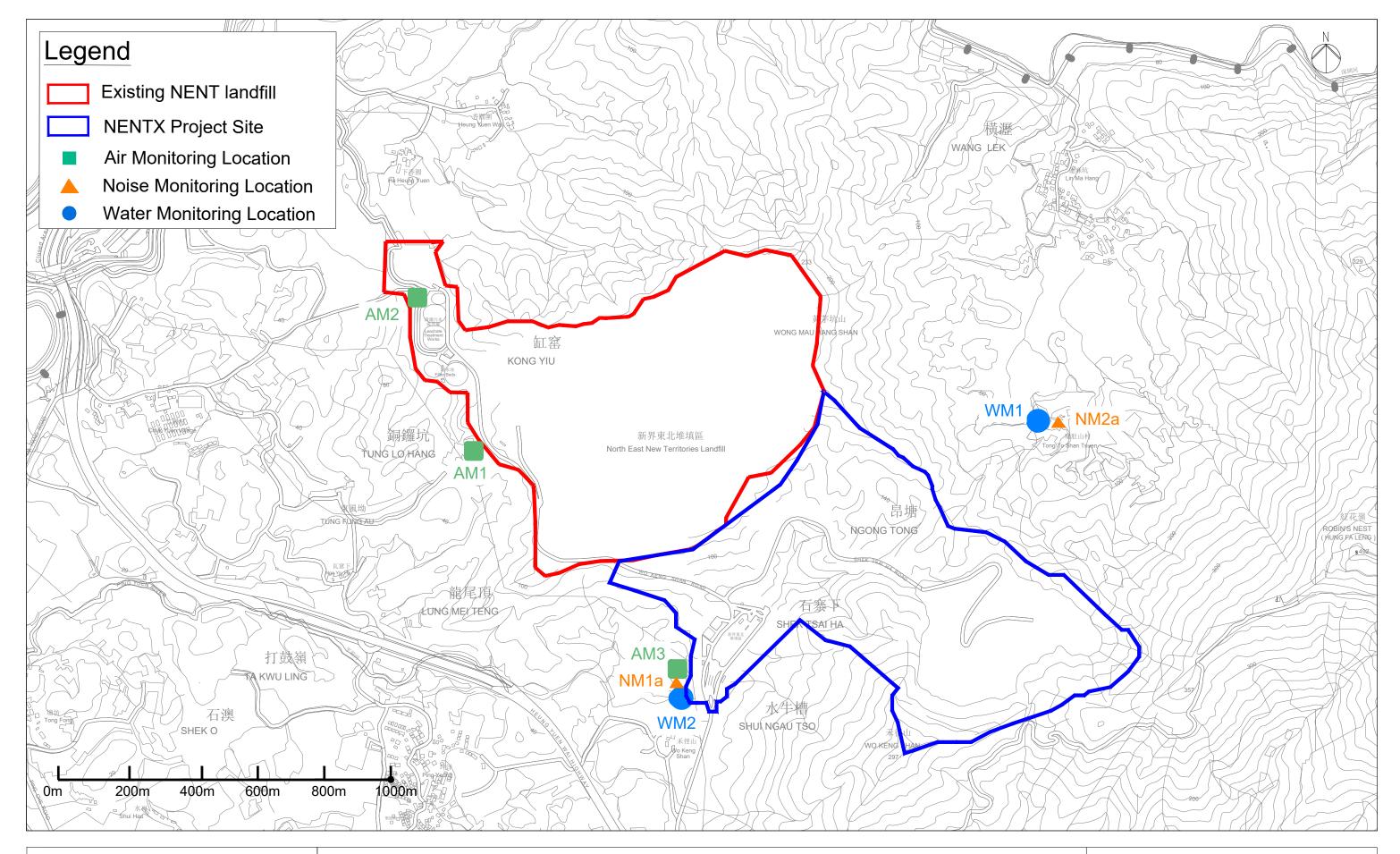

14.3 Construction Programme for the Next Month

14.3.1 The most updated construction programme for the Project is presented in **Appendix A**.

15 Conclusion

- 15.1.1 1-hr & 24-hr TSP impact monitoring was carried out in the reporting month. No Action / Limit Level exceedance for 1-hr & 24-hr TSP impact monitoring was recorded during the period.
- 15.1.2 Construction noise monitoring was carried out in the reporting month. No Action / Limit Level exceedance at NM1a & NM2a was recorded during the period.
- 15.1.3 The baseline groundwater monitoring was commenced on 28 March 2025. The details of baseline groundwater monitoring will be presented in the Baseline Monitoring Report.
- 15.1.4 Surface Water Quality Monitoring was carried out in the reporting month. No Action / Limit Level exceedance of surface water quality was recorded at WM1 & WM2 during the reporting period.
- 15.1.5 Landfill Gas Monitoring was carried out in the reporting month. No exceedance of Action / Limit Levels of LFG was recorded during the reporting period.
- 15.1.6 In terms of cultural heritage, implementation of the mitigation measures such as permanent fencing to protect the boulder path and setting up warning notices during construction phase of the Project has been monitored through the regular site inspection/audit in the reporting period. All the mitigation measures are in order.
- 15.1.7 Weekly environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for Permit/ Licenses were given to the Contractor for remediating the deficiencies identified during the site inspections.
- 15.1.8 No environmental complaint was recorded during the reporting period.
- 15.1.9 No non-compliance event was recorded during the reporting period.
- 15.1.10 No notification of summons and prosecution was received during the reporting period.
- 15.1.11 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Figure 1 Location of the Project Site

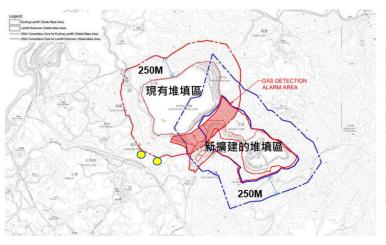


North-East New Territories (NENT) Landfill Extension Location Plan of the Project Site

Figure 1.1

Scale: 1:10000

Figure 2 Impact Air Quality, Noise & Surface Water **Quality Monitoring Locations**

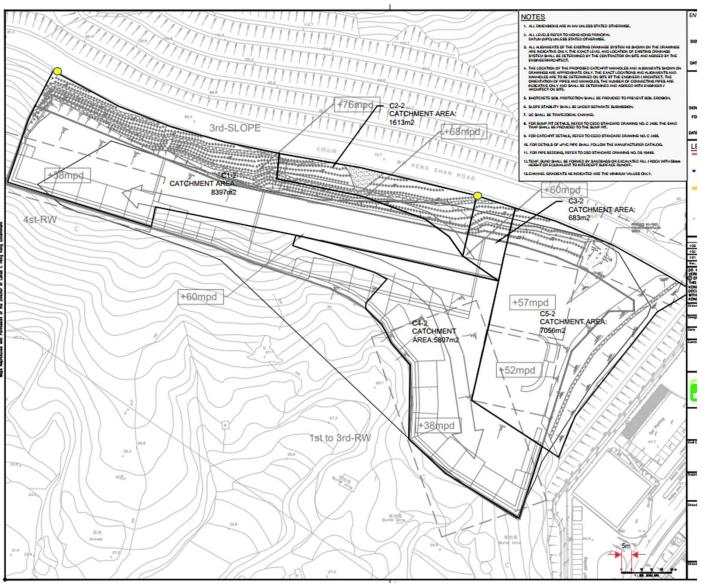


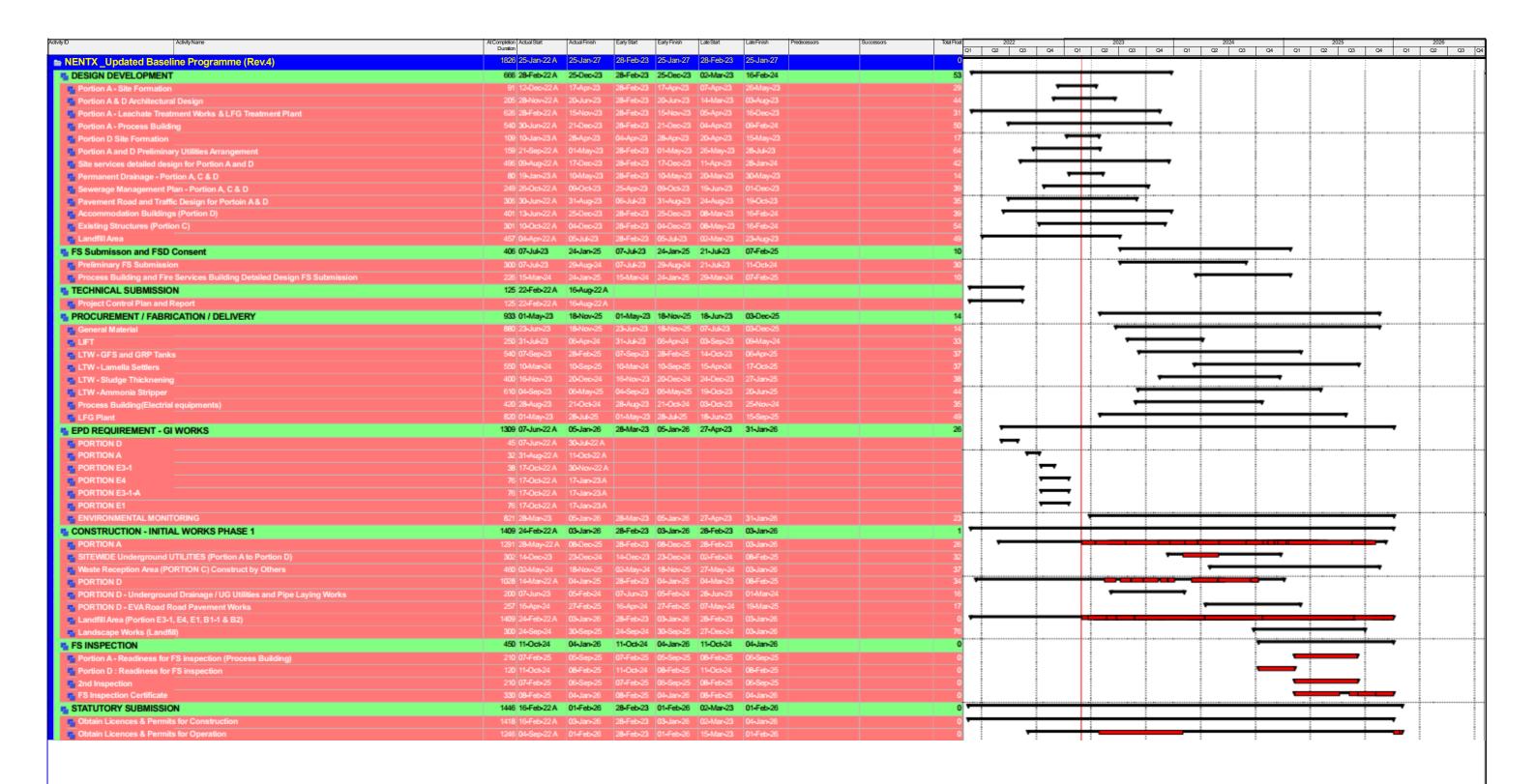
North East New Territories (NENT) Landfill Extension Impact Monitoring Location

Figure 2

Figure 3 Landfill Gas Monitoring Locations

Gas Monitoring Point • Monitoring Frequency: 2 times per day



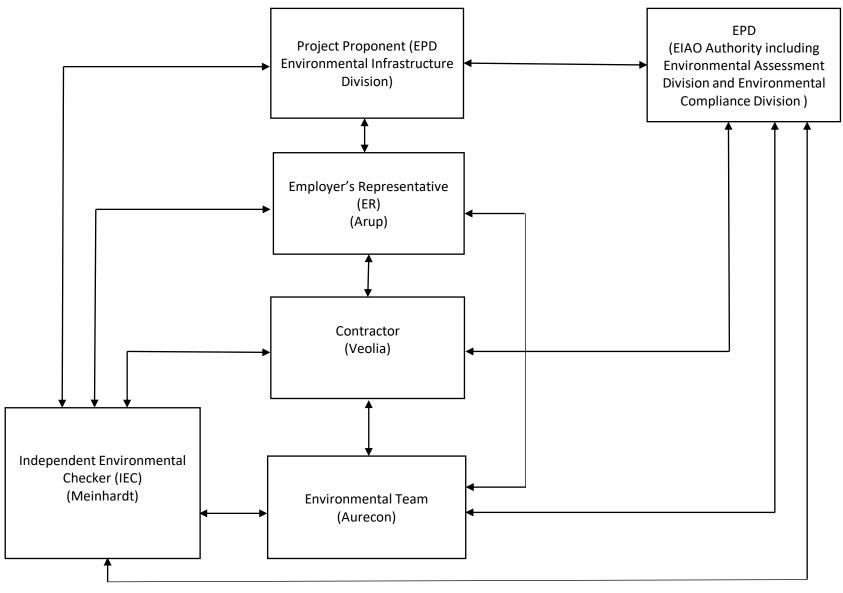

Figure 3 Landfill Gas Monitoring Locations

Gas Monitoring Point
Monitoring Frequency:
2 times per day

Figure 3 Landfill Gas Monitoring Locations

Appendix A Construction Programme & **Construction Activities**

NORTH EAST NEW TERRITORIES (NENTX) LANDFILL EXTENSION
UPDATED BASELINE PROGRAMME (Rev.4)
Ececutive Summary
INITIAL WORKS (PHASE 1)
Page 1 of 1



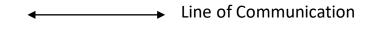
Revision	Ch	Appr
GENERAL REVISION		
GENERAL REVISION		
	GENERAL REVISION	GENERAL REVISION

Construction Activities	Where	Who	What - ENV Impacts	Mitigation Measures
Material loading and unloading, backfilling of material, site traffic	Portion A, SBA to Alternative Disposal Ground	PCL	Dust, bringing mud to the common haul road	Speed limit, covering of materials and water spraying, lorry washing at the exit of the site
Construction of Site buildings	Portion D	PCL	Washout flowing to site water discharge point, dust emissions	Avoid the spillage of concrete, lorry washing at designated area, operation and maintenance of water treatment facility at discharge point
Site clearance	Portion A, Portion E3-1, Portion E4, Portion E1/B2	PCL	Wash out going to surface water channel and site water discharge point, generation of yard waste	Cover exposed slope by tarpaulin, diversion of surface water, operation and maintenance of water treatment facility at discharge point, implementation of trip ticket system
Installation of permanent fencing	Portion A, Portion B1, Portion E4	PCL	Dust	Covering of cement storage area, enclosure of mixing area
Site formation	Portion A, Portion E3-1, Portion E4, Portion E1/B2	PCL	Generation of C&D waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Tree Felling	Whole site	PCL	Generation of yard waste	Implementation of trip ticket system, waste recycling, internal waste transfer
Shotcreting (permanent and temporary)	Whole site	PCL	Dust	Covering of cement storage area, enclosure of mixing area
Soil Nail Installation	Portion A, E1/B2, E4	PCL	Dust	Covering of cement storage area, enclosure of mixing area, watering during works, install dust screen at work area
Installation of minipile	Portion A	PCL	Dust, generation of muddy water	Use of dust shield, regular watering, construct proper drainage to divert muddy water to treatment facility
Construction of RE Wall	Portion E3-1	PCL	Dust	Regular watering

Remark: PCL is the Sub-contractor for this project

Appendix B Project Organization Chart & Management Structure

Notes:


EPD - Environmental Protection Department

Arup – Ove Arup & Partners Limited

Veolia - Veolia Environmental Services Hong Kong Limited

Meinhardt - Meinhardt Infrastructure And Environment Limited

Aurecon - Aurecon Hong Kong Limited

Appendix C Detail Status of FEP & EP Submission

Detail Status of Submissions required under the FEP & EP

FEP Condition	EP Condition	Submission / Measures Status		
2.1	2.3	Management Organization of Main Construction Companies	Submission Date (12 Oct 2022)	
2.2	2.4	Setting up of Community Liaison Group (CLG)	Submission Date (12 Oct 2022)	
			1 st CLG meeting (12 Jan 2023)	
2.3	2.5	Submission of EM&A Manual	Submission Date (12 Oct 2022)	
2.4	2.6	Submission of Preservation of Cultural Landscape Features	Survey and Preservation of Grave Records: Submission Date (15 Oct 2022)	
			Survey and Preservation of Boulder Paths: Submission Date (12 Oct 2022)	
2.5	2.7	Submission of Vegetation Survey (Transplantation Proposal)	Submission Date (2 Sep2022)	
2.6	2.8	Submission of translocation proposal	Submission Date (8 Jul 2022)	
2.7	2.9	Submission of Transplantation Report and Post-Transplantation	Submission Date (19 Jan 2023)	
		Monitoring	1 st monitoring (24 Nov 2022)	
			2 nd monitoring (9 Dec 2022)	
			3 rd monitoring (21 Dec 2022)	
			4 th monitoring (13 Jan 2023)	
			5 th monitoring (26 Jan 2023)	
			6 th monitoring (8 Feb 2023)	
			7 th monitoring (24 Feb 2023)	
			8 th monitoring (20 Mar 2023)	
			9 th monitoring (21 Apr 2023)	
			10 th monitoring (12 May 2023)	
			11 th monitoring (16 Jun 2023)	
			12 th monitoring (18 Jul 2023)	
			13 th monitoring (11 Aug 2023)	
			14 th monitoring (15 Sep 2023)	
			15 th monitoring (13 Oct 2023)	

FEP Condition	EP Condition	Submission / Measures	Status
2.8	2.10	Submission of Translocation Report and Post-Translocation Monitoring	Translocation was carried out in July 2022
			Submission Date (27 Dec 2022)
			1 st monitoring (29 Aug 2022)
			2 nd monitoring (28 Sep 2022)
			3 rd monitoring (28 Oct 2022)
			4 th monitoring (22 Nov 2022)
			5 th monitoring (29 Dec 2022)
			6 th monitoring (30 Jan 2023)
			7 th monitoring (24 Feb 2023)
			8 th monitoring (20 Mar 2023)
			9th monitoring (19 Apr 2023)
			10 th monitoring (17 May 2023)
			11th monitoring (7 Jun 2023)
			12 th monitoring (12 Jul 2023)
2.9	2.11	Submission of Detailed Landfill Gas Hazard Assessment Report	Submission Date (6 Oct 2022)
2.10	2.12	Submission of Waste Management Plan	Submission Date (30 Dec 2022)
2.11	2.13	Submission of Landscape Plan	Submission Date (31 May 2023)
3.2	3.2	Submission of Baseline Monitoring Report	Submission Date (30 Nov 2022)

FEP Condition	EP Condition	Submission / Measures	Status
3.3	3.3	Submission of Monthly EM&A	1 st report (Dec 2022)
		Report	2 nd report (Jan 2023)
			3 rd report (Feb 2023)
			4 th report (Mar 2023)
			5 th report (Apr 2023)
			6 th report (May 2023)
			7 th report (Jun 2023)
			8 th report (Jul 2023)
			9 th report (Aug 2023)
			10 th report (Sep 2023)
			11 th report (Oct 2023)
			12 th report (Nov 2023)
			13 th report (Dec 2023)
			14 th report (Jan 2024)
			15 th report (Feb 2024)
			16 th report (Mar 2024)
			17 th report (Apr 2024)
			18 th report (May 2024)
			19 th report (Jun 2024)
			20 th report (Jul 2024)
			21st report (Aug 2024)
			22 nd report (Sep 2024)
			23 rd report (Oct 2024)
			24 th report (Nov 2024)
			25 th report (Dec 2024)
			26 th report (Jan 2025)
			27 th report (Feb 2025)
			28 th report (Mar 2025)
			29 th report (Apr 2025)
			30 th report (May 2025)
			31st report (Jun 2025)
			32 nd report (Jul 2025)

Appendix D Monitoring Schedule for Reporting Month & Next Month

7-2025						
Sun	Mon	Tue	Wed	Thur	Fri	Sat
29	30	1	2	3	4 Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	5
6	7	8		Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a		12
	14	Noise monitoring at NM1a and NM2a Surface water quality monitoring at WM1 & WM2	Air quality monitoring at AM1, AM2 and AM3	17	18	19
20	21	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a			25	26
27	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	29	30	31	1	2

Remark

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).
- 5. Please arrange a Veolia staff to accompany our staff(s) to each locations for every monitoring.

			8-2025			
Sun	Mon		Wed	Thur	Fri	Sat
27	28	29	30	31	1	Air quality monitoring at AM1, AM2 and AM3
3	4		6	7	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	
10	11	Surface water quality monitoring at WM1 & WM2		Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a		16
17	18		Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a			23
24	25	Air quality monitoring at AM1, AM2 and AM3 Noise monitoring at NM1a and NM2a	27	28	29	30

Remark

- 1. The schedule is tentative only and would be subject to changes due to unforeseen circumstances.
- 2. Air quality monitoring includes 1-hour TSP and 24-hour TSP monitoring at AM1, AM2 and AM3 (Ref.: Table 3.1 of the approved EM&A Manual).
- 3. Noise monitoring includes 30-minute construction noise monitoring at NM1a and NM2a (Ref.: Table 4.1 of the approved EM&A Manual).
- 4. Surface water quality monitoring includes in-situ measurement and water sampling for laboratory analysis at WM1 and WM2 (Ref.: Table 5.5 and Section 5.5.6 of the approved EM&A Manual).
- 5. Please arrange a Veolia staff to accompany our staff(s) to each locations for every monitoring.

Appendix E Calibration Certificates

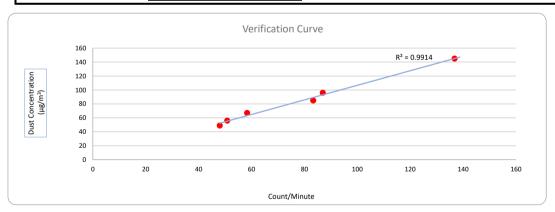
Air Quality

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

Verification Test Date:	13-Sep-24	to	14-Sep-24	Next Verification Test Date:	12-Sep-25
Unit-under-Test- Model No.:		Sibata LD-5	R		
Unit-under-Test Serial No.:		0Z4545			
Our Report Refrence No.:		RPT-23-HVS-0	065		
Calibration Location:	AM2, location near the Leachate Trea			ment Works within the NENTX Landfill	
-					

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1106	3465
Last Calibration Date:	13-Sep-24	16-Jan-24
Next Calibration Date:	12-Sep-25	15-Jan-25

Equipement Vertification Result

Verification		Duration			Results from	Calibrated Equipement	Results from Standard Equipment
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	28/11/23	8789.68	8792.68	180.00	15648	87	96
2	28/11/23	8792.68	8795.68	180.00	14993	83	85
3	28/11/23	8795.68	8798.68	180.00	8635	48	49
4	30/11/23	8798.68	8801.68	180.00	10501	58	67
5	30/11/23	8801.68	8804.68	180.00	24622	137	145
6	30/11/23	8804.68	8807.68	180.00	9145	51	56

Linear Regression of y on x

Slope, K factor:	<u>1.0451</u>	Intercept:	2.1545	*Correlation Coefficient,R:	<u>0.9957</u>
Verification Test Result:	Strong Correlation, Results	Strong Correlation, Results were accepted.		* If the Correlation Coefficient, R is <0.5. Chec	cking and Re-verification are required.

Operated By:	Andy Li	Date:	14-09-2024
	Project Technician, Environmental		
	/		

Checked By: Tandy Tse Date: 14-09-2024

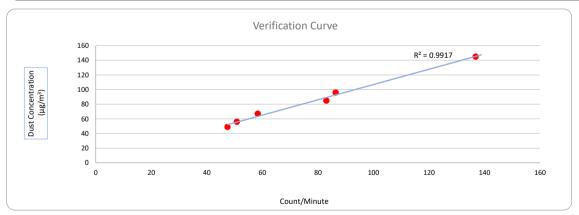
Senior Consultant, Environmental

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

Verification Test Date:	13-Sep-24	to	14-Sep-24	Next Verification Test Date:	12-Sep-25
Unit-under-Test- Model No.:		Sibata LD-5R			
Unit-under-Test Serial No.:		882106			
Our Report Refrence No.:	I	RPT-23-HVS-00	68	•	
Calibration Location:	AM2, location near the Leachate Tr			eatment Works within the NENTX Landfill	
-					_

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1106	3465
Last Calibration Date:	13-Sep-24	16-Jan-24
Next Calibration Date:	12-Sep-25	15-Jan-25

Equipement Vertification Result

Verification		Duration			Results from	Calibrated Equipement	Results from Standard Equipment
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	28/11/23	8789.68	8792.68	180.00	15546	86	96
2	28/11/23	8792.68	8795.68	180.00	14944	83	85
3	28/11/23	8795.68	8798.68	180.00	8543	47	49
4	30/11/23	8798.68	8801.68	180.00	10499	58	67
5	30/11/23	8801.68	8804.68	180.00	24622	137	145
6	30/11/23	8804.68	8807.68	180.00	9145	51	56

Linear Regression of y on x

Operated By: Andy Li Date: 14-09-2024
Project Technician, Environmental

Checked By: Date: 14-09-2024

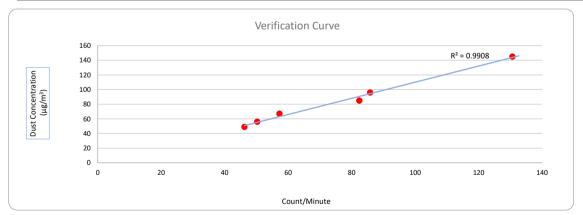
Senior Consultant, Environmental

Sibata LD-5R K-Factor Verification Test by Total Suspended Particulates HVS Test Report

Information of Calibrated Equipement

Verification Test Date:	13-Sep-24	to	14-Sep-24	Next Verification Test Date:	12-Sep-25
Unit-under-Test- Model No.:		Sibata LD-5R		•	
Unit-under-Test Serial No.:		942532		•	
Our Report Refrence No.:	I	RPT-23-HVS-00	71	•	
Calibration Location:	AM2, location near the Leachate Tre			eatment Works within the NENTX Landfill	
_					_

Standard Equipment Information


Verification Equipment Type:	Tisch TSP HVS	Tisch HVS Calibrator
Standard Equipment Model No.:	TE-5170X	TE-5025A
Equipment serial no.:	1106	3465
Last Calibration Date:	13-Sep-24	16-Jan-24
Next Calibration Date:	12-Sep-25	15-Jan-25

Equipement Vertification Result

Verification		Duration			Results from	Calibrated Equipement	Results from Standard Equipment
Test No.	Date	Start-time	End-time	Elapsed Time (in min)	Total Counts	Counts/ Minute x-axis	Dust Concentration (μg/m³) y-axis
1	28/11/23	8789.68	8792.68	180.00	15446	86	96
2	28/11/23	8792.68	8795.68	180.00	14835	82	85
3	28/11/23	8795.68	8798.68	180.00	8320	46	49
4	30/11/23	8798.68	8801.68	180.00	10303	57	67
5	30/11/23	8801.68	8804.68	180.00	23517	131	145
6	30/11/23	8804.68	8807.68	180.00	9043	50	56

Linear Regression of y on x

Operated By:

Andy Li

Project Technician, Environmental

Date: 14-09-2024

Checked By: Tandy Tse Date: 14-09-2024

Senior Consultant, Environmental

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Tung Lo Hang	Site ID:	AM1	Cal Date: Exp Date:	5/6/2025 5/8/2025
Serial No:	1105	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	756.4	Actual Temperature during Calibration (T _a) (deg K):	301.0
---	-------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.08107
Serial No.:	3465	Intercept (b _c):	-0.04295
Calibration Due Date:	15-Jan-25	Corr. Coeff:	0.99999

Calibration Data

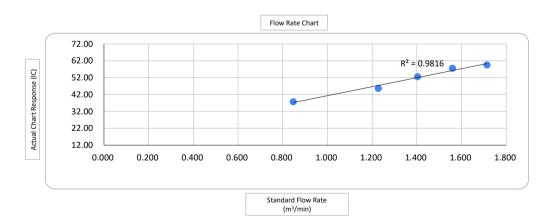
Plate or	ΔH₂O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	12.60	1.714	60.0	59.57
13	10.40	1.559	58.0	57.58
10	8.40	1.403	53.0	52.62
7	6.40	1.227	46.0	45.67
5	3.00	0.847	38.0	37.72

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m= 26.6399 b= 14.6633 Corr. Coeff= 0.9908

Calculations

$$\begin{split} Qa &= 1/m_c*[Sqrt \ (\Delta H_2 O*(P_a/P_{Std})*(T_{Std}/T_a)) - b_c] \\ IC &= I*(Sqrt \ (P_a/P_{Std})*(T_{Std}/T_a)) \end{split}$$


Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K

P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Checked by: F.C Tsang Date: 08-Jun-2025

Monitoring Team Leader

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Heung YuenWai	Site ID:	AM2	Cal Date: Exp Date:	5/6/2025 5/8/2025
Serial No:	1106	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P _a) (mm Hg):	756.4	Actual Temperature during Calibration (T _a) (deg K):	301.0
--	-------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.08107
Serial No.:	3465	Intercept (b _c):	-0.04295
Calibration Due Date:	2-Dec-25	Corr. Coeff:	0.99999

Calibration Data

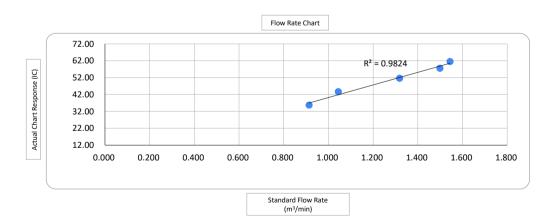
Plate or	ΔH₂O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	10.20	1.544	62.0	61.55
13	9.60	1.499	58.0	57.58
10	7.40	1.318	52.0	51.62
7	4.60	1.044	44.0	43.68
5	3.50	0.913	36.0	35.74

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m=	37.3151	b=	2.8828	Corr. Coeff=	0.9911

Calculations

$$\begin{split} Qa &= 1/m_c*[Sqrt \ (\Delta H_2 O*(P_a/P_{Std})*(T_{Std}/T_a)) - b_c] \\ IC &= I*(Sqrt \ (P_a/P_{Std})*(T_{Std}/T_a)) \end{split}$$


Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K

P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Checked by: F.C Tsang Date: 08-Jun-2025

Monitoring Team Leader

HIVOL SAMPLER CALIBRATION DATA SHEET (TSP)

Site Information

Location:	Representative For Wo Keng Shan Tsuen	Site ID:	АМ3	Cal Date: Exp Date:	5/6/2025 5/8/2025
Serial No:	1856	Model:	TE-5170X	Operator:	Andy Li

Ambient Condition

Actual Pressure during Calibration (P_a) (mm Hg):	756.4	Actual Temperature during Calibration (T _a) (deg K):	301.0
---	-------	--	-------

Calibration Orifice

Model:	TE-5025A	Slope (m _c):	2.08107
Serial No.:	3465	Intercept (b _c):	-0.04295
Calibration Due Date:	2-Dec-25	Corr. Coeff:	0.99999

Calibration Data

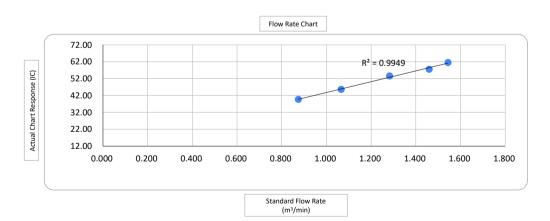
Plate or	ΔH₂O	Qa, X-Axis	I, CFM	IC, Y-Axis
Test #	(in)	(m³/min)	(chart)	(corrected)
18	10.20	1.544	62.0	61.55
13	9.10	1.460	58.0	57.58
10	7.00	1.283	54.0	53.61
7	4.80	1.066	46.0	45.67
5	3.20	0.874	40.0	39.71

Sampler Calibtation Relationship (Qa on x-axis, IC on y-axis)

m= 31.9802 b= 11.7988 Corr. Coeff= 0.9974

Calculations

$$\begin{split} Qa &= 1/m_c*[Sqrt \ (\Delta H_2 O*(P_a/P_{Std})*(T_{Std}/T_a)) - b_c] \\ IC &= I*(Sqrt \ (P_a/P_{Std})*(T_{Std}/T_a)) \end{split}$$


Qa = actual flow rate IC = corrected chart response I = actual chart response m_c = calibrator slope

 b_c = calibrator intercept

m = sampler slope b = sampler intercept T_{Std} = 298 deg K

P_{Std} = 760 mm Hg

T_a = actual temperature during calibration (deg K) P_a = actual pressure during calibration (mm Hg)

Checked by: F.C Tsang Date: 08-Jun-2025

Monitoring Team Leader

RECALIBRATION DUE DATE:

December 2, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 2, 2024

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch

Pa: 757.4

mm Hg

Calibration Model #:

TE-5025A

Calibrator S/N: 3465

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4300	3.2	2.00
2	3	4	1	1.0190	6.4	4.00
3	5	6	1	0.9090	7.9	5.00
4	7	8	1	0.8680	8.8	5.50
5	9	10	1	0.7170	12.8	8.00

	Data Tabulation								
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)				
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)				
1.0093	0.7058	1.4238	0.9958	0.6963	0.8796				
1.0051	0.9863	2.0136	0.9916	0.9731	1.2439				
1.0031	1.1035	2.2512	0.9896	1.0886	1.3907				
1.0018	1.1542	2.3611	0.9884	1.1387	1.4586				
0.9965	1.3898	2.8476	0.9831	1.3711	1.7592				
	m=	2.08107		m=	1.30313				
QSTD	b=	-0.04295	QA [b=	-0.02653				
	r=	0.99999		r=	0.99999				

	Calculations							
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)					
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime					
	For subsequent flow rate calculations:							
Qstd=	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$ Qa= $1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$							

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsme	ter manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

Noise

Certificate of Calibration

for

Description:

Sound Level Meter

Manufacturer:

NTi Audio

Type No.:

XL2 (Serial No.: A2A-13661-E0)

Microphone:

ACO 7052 (Serial No.:84464)

Preamplifier:

NTi Audio MA220 (M2211) (Serial No.:5287)

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street, Kwun Tong,

Kowloon, Hong Kong

Upon receipt for calibration, the instrument was found to be:

☑ Within (31.5Hz – 8kHz)

☐ Outside

the allowable tolerance.

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 12 August 2024

Date of calibration: 13 August 2024

Date of NEXT calibration: 12 August 2025

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa Laboratory Manager

Date of issue: 13 August 2024

Certificate No.: APJ24-049-CC001

Page 1 of 4

Homepage: http://www.aa-lab.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

1. Calibration Precaution:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Conditions:

Air Temperature:23.3 °CAir Pressure:1006 hPaRelative Humidity:62.3 %

3. Calibration Equipment:

	Type	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV240081	HOKLAS

4. Calibration Results

Sound Pressure Level

Reference Sound Pressure Level

Setting of Unit-under-test (UUT)		Applied value		UUT Reading,	IEC 61672 Class 1		
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.1	±0.4

Linearity

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
				94		94.0	Ref
30-130	dBA	SPL	Fast	104	1000	104.1	±0.3
				114		114.1	±0.3

Time Weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
30-130	dBA	SPL	Fast	94	1000	94.0	Ref
30-130	UDA	SFL	Slow	94	1000 NR TEST	IG LABORD 1	±0.3

Certificate No.: APJ24-049-CC001

Page 2 of 4

Homepage: http://www.aa-lab.com

Acoustics and Air Testing Laboratory Co. Ltd. 聲學及空氣測試實驗室有限公司

Frequency Response

Linear Response

Setting of Unit-under-test (UUT)			Appl	Applied value		IEC 61672 Class 1	
Range, dB	Freq. We	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	94.1	±2.0
					63	94.1	±1.5
					125	94.1	±1.5
				250	94.0	±1.4	
30-130	dB	SPL	Fast	94	500	94.1	±1.4
					1000	94.1	Ref
					2000	94.4	±1.6
					4000	95.0	±1.6
					8000	94.5	+2.1; -3.1

A-weighting

Setting of Unit-under-test (UUT)			Applied value		UUT Reading,	IEC 61672 Class 1	
Range, dB	Freq.	Weighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	54.7	-39.4 ±2.0
					63	67.9	-26.2 ±1.5
					125	77.9	-16.1 ±1.5
					250	85.4	-8.6 ±1.4
30-130	dBA	SPL	Fast	94	500	90.9	-3.2 ±1.4
					1000	94.1	Ref
					2000	95.6	+1.2 ±1.6
					4000	96.0	$+1.0\pm1.6$
					8000	93.4	-1.1+2.1; -3.1

C-weighting

Setting of Unit-under-test (UUT)			Appl	Applied value		IEC 61672 Class 1	
Range, dB	Freq. W	eighting	Time Weighting	Level, dB	Frequency, Hz	dB	Specification, dB
					31.5	91.1	-3.0 ±2.0
					63	93.3	-0.8 ±1.5
					125	93.9	-0.2 ±1.5
				250	94.0	-0.0 ±1.4	
30-130	dBC	SPL	Fast	94	500	94.1	-0.0 ±1.4
					1000	94.1	Ref
					2000	94.2	-0.2 ±1.6
					4000	94.2	-0.8 ±1.6
					8000	91.5	-3.0 +2.1: -3.1

Certificate No.: APJ24-049-CC001

Page 3 of 4

Homepage: http://www.aa-lab.com

5. Calibration Results Applied

The results apply to the particular unit-under-test only. All calibration points are within manufacture's specification as IEC 61672 Class 1.

Uncertainties of Applied Value:

94 dB	31.5 Hz	± 0.10
	63 Hz	± 0.10
	125 Hz	± 0.10
	250 Hz	± 0.05
	500 Hz	± 0.05
	1000 Hz	± 0.05
	2000 Hz	± 0.05
	4000 Hz	± 0.05
	8000 Hz	± 0.10
104 dB	1000 Hz	± 0.05
114 dB	1000 Hz	± 0.05

The uncertainties are evaluated for a 95% confidence level.

Note:

The values given in this certification only related to the values measured at the time of the calibration and any uncertainties quoted will not allow for the equipment long-term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the calibration. (A+A)*L shall not be liable for any loss or damage resulting from the use of the equipment.

AR TESTING LARORIDA NO. 10 P. CO. 10

Page 4 of 4

Homepage: http://www.aa-lab.com

Certificate of Calibration

for

Description:

Sound Level Calibrator

Manufacturer:

RION

Type No.:

NC-75

Serial No.:

34724245

Submitted by:

Customer:

Aurecon Hong Kong Limited

Address:

Unit 1608, 16/F, Tower B, Manulife Financial Centre,

223-231 Wai Yip Street, Kwun Tong,

Kowloon, Hong Kong

U	pon	receipt	for	calibration.	the	instrument	was	found	to	be:

Within

☐ Outside

the allowable tolerance.

The test equipments used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

Date of receipt: 22 July 2024

Date of calibration: 24 July 2024

Date of NEXT calibration: 23 July 2025

Calibrated by:

Calibration Technician

Certified by:

Mr. Ng Yan Wa

Laboratory Manager

Date of issue: 24 July 2024

Certificate No.: APJ23-154-CC003

Page 1 of 2

1. Calibration Precautions:

- The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 24 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- The results presented are the mean of 3 measurements at each calibration point.

2. Calibration Specifications:

Calibration check

3. Calibration Conditions:

Air Temperature:	23.4°C
Air Pressure:	1005 hPa
Relative Humidity:	56.7 %

4. Calibration Equipment:

Test Equipment	Type	Serial No.	Calibration Report Number	Traceable to
Multifunction Calibrator	B&K 4226	2288467	AV240081	HOKLAS
Sound Level Meter	RION NA-28	30721812	AV230128	HOKLAS

5. Calibration Results

5.1 Sound Pressure Level

Nominal value	Accept lower level dB	Accept upper level	Measured value
dB		dB	dB
94.0	93.6	94.4	94.0

Note:

The values given in this certification only related to the values measured at the time of the calibration.

Certificate No.: APJ23-154-CC003

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road,

Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Email: info@callab.com.hk Fax: +852 30116194 Website: www.callab.com.hk

Calibration Certificate No.: CC0182502

Information provided by customer

Customer: Aurecon Hong Kong Limited

Address: Unit 1608, 16/F, Tower B, Manulife Financial Centre, 222-231 Wai Yip Street, Kwun Tong, Hong Kong

Equipment identification provided by customer

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No.

Air Velocity Meter UNI-T UT363 C222415356 A-02

Certificate Information

Date of Receipt: 12 February 2025 Calibration Condition: 22.4°C, 54%RH, 1011hPa

Date of Calibration:

Recommended Next Cal. Date:

N/A

N/A

Appearance:

Calibration Procedure:

SOP-112

Remark:

N/A

Adjustment:

N/A

Good

N/A

Reference Equipment Identification

Equipment DescriptionModelSerial No.Expiration DateHot Wire Anemometer405-V14157623117 July 2026

Result of Calibration

Air Velocity

Reference Reading (m/s)	Measured Reading (m/s)	Error (m/s)	Uncertainty (%)	Technical Requirement	Technical Reference Doc.
1.04	1.0	0.0	3.6	± 5 %	Mfr's Spec.
2.02	2.1	0.1	3.6	± 5 %	Mfr's Spec.
4.98	5.1	0.1	3.6	± 5 %	Mfr's Spec.
8.01	8.2	0.2	3.6	± 5 %	Mfr's Spec.

CT-AFR-01

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

Note4: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received.

Calibrated By:

Wing Cheng

Checked and Approved By:

Company Chop:

ren Yeung Certificate Issue Date: 20 February 2025

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

CC0182502

CT-BEG-04

Page 1 of 1

Water Quality

QUALITY PRO TEST-CONSULT LIMITED

Email:info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060091

Date of Issue

: 18 June 2025

Page No.

: 1 of 2

PART A - CUSTOMER INFORMATION

Acuity Sustainability Consulting Limited

Unit 1608, 16/F, Tower B, Manulife Fin. Centre 223 - 231 Wai Yip Street, Kwun Tong,

Kowloon (HK) Hong Kong

PART B - SAMPLE INFORMATION

Name of Equipment:

YSI ProDSS Multi Parameters

Manufacturer:

YSI

Serial Number:

22C106561

Date of Received:

12 June 2025

Date of Calibration:

Date of Next Calibration:

16 June 2025 16 September 2025

Request No.:

D-BE060091

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Test Parameter

Reference Method

pH value

APHA 21e 4500-H+ B

Temperature

Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March

2008: Working Thermometer Calibration Procedure

Salinity

APHA 21e 2520 B

Dissolved oxygen

APHA 23e 4500-O G (Membrane Electrode Method)

Turbidity

APHA 21e 2130 B (Nephelometric Method)

Conductivity

APHA 21e 2510 B

PART D - CALIBRATION RESULT

(1) pH value

Target (pH unit)	Display Reading (pH unit)	Tolerance	Result
4.00	4.06	0.06	Satisfactory
7.42	7.29	-0.13	Satisfactory
10.01	9.95	-0.06	Satisfactory

Tolerance of pH value should be less than ± 0.2 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Display Reading (°C)	Tolerance (°C)	Result
43.2	42.0	-1.2	Satisfactory
28.3	27.4	-0.9	Satisfactory
10.3	10.6	0.3	Satisfactory

Tolerance of Temperature should be less than ± 2.0 (°C)

(3) Salinity

Expected Reading (g/L)	Display Reading (g/L)	Tolerance (%)	Result
10	9.96	-0.4	Satisfactory
20	19.57	-2.15	Satisfactory
30	29.47	-1.77	Satisfactory

Tolerance of Salinity should be less than ± 10.0 (%)

--- CONTINUED ON NEXT PAGE ---

AUTHORIZED SIGNATORY:

> FUNG Yuen-ching Laboratory Manager

專業化驗有限公司 QUALITY PRO TEST-CONSULT LIMITED

Unit 10, 5/F, Wah Wai Centre, 38-40 Au Pui Wan St., Fotan, Hong Kong Email: info@qualityprotest.com; Website: www.qualityprotest.com Tel: (852) 3956 8717; Fax: (852) 3956 3928

REPORT OF EQUIPMENT PERFORMANCE CHECK/ CALIBRATION

Test Report No.

: R-BE060091

Date of Issue

: 18 June 2025

Page No.

: 2 of 2

(4) Dissolved oxygen

Expected Reading (mg/L)	Display Reading (mg/L)	Tolerance (mg/L)	Result
7.43	7.67	0.24	Satisfactory
4.28	4.49	0.21	Satisfactory
3.11	3.25	0.14	Satisfactory
0.09	0.39	0.30	Satisfactory

Tolerance of Dissolved oxygen should be less than ± 0.5 (mg/L)

(5) Turbidity

Expected Reading (NTU)	Display Reading (NTU)	Tolerance (a) (%)	Result
0	0.37	-	Satisfactory
10	10.48	4.8	Satisfactory
20	20.01	0.05	Satisfactory
100	102.81	2.81	Satisfactory
800	811.84	1.48	Satisfactory

Tolerance of Turbidity should be less than ± 10.0 (%)

(6) Conductivity

Expected Reading (μS/cm at 25°C)	Display Reading (μS/cm at 25°C)	Tolerance (%)	Result
146.9	157.7	7.35	Satisfactory
1412	1412	0	Satisfactory
12890	12897	0.05	Satisfactory
58670	59353	1.16	Satisfactory
111900	115441	3.16	Satisfactory

Tolerance of Conductivity should be less than \pm 10.0 (%)

Remark(s): -

- The "Date of Next Calibration" is recommended according to best practice principles followed by QPT or relevant international standards.
- The results relate only to the calibrated equipment as received.
- The performance of the equipment stated in this report is checked using independent reference material, with results compared against a calibrated secondary source.
- "Displayed Reading" denotes the figure shown on the item under calibration/checking, regardless of equipment precision or significant figures.
- The "Tolerance Limit" mentioned is the acceptance criteria applicable to similar equipment used by Quality Pro Test-Consult Ltd. or quoted from relevant international standards.

--- END OF REPORT ---

⁽a) For 0 NTU, Display Reading should be less than 1 NTU

Cal Lab Limited 校正實驗室有限公司

Room 2103, Technology Plaza, 29-35 Sha Tsui Road,

Tsuen Wan, NT, Hong Kong

Tel: +852 25680106 Fax: +852 30116194 Email: info@callab.com.hk
Website: www.callab.com.hk

Calibration Certificate No.: CC0172502 Information provided by customer

Customer: A

Acumen Laboratory and Testing Limited

Address:

Workshop 04, 7/F, The Whitney, No. 183 Wai Yip Street, Kwun Tong, Kowloon, Hong Kong

Equipment Identification provided by customer

Equipment Description Manufacturer Model No. Serial No. Assigned equipment No.

Flow Probe Global Water FP111 22K100859 N/A

Certificate Information

Date of Receipt:

10 February 2025

Calibration Condition:

21.7°C, 52%RH, 1008hPa

Date of Calibration:
Due Date of Calibration:

11 February 2025

Adjustment:

N/A

Due Date of Calibration: Calibration Procedure: N/A JJG 1030-2007 Appearance: Remark:

Good N/A

Reference Equipment Identification

Equipment DescriptionModelSerial No.Water Flow MeterGW8100202406280

Expiration Date

20240628GW8100-P165 13 November 2025

Result of Calibration

Water Flow Rate

Reference Reading (m/s)	Measured Reading (m/s)	Error (m/s)	Uncertainty (%)
0.00	0.0	N/A	N/A
1.03	1.1	-0.07	5.8
2.92	3.0	-0.08	5.8
5.06	5.0	0.06	5.8

Note1: The estimated expanded uncertainties have been calculated in "Evaluation and expression of uncertainty in measurement" and give an internal estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

Note2: The standard (s) and instrument used in the calibration are traceable to national or international recognized standard and are calibrated on a schedule to maintain the accuracy and good condition.

Note3: The result reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long term stability of the instrument.

Note4: The result shows in this calibration certificate relate only to the item calibrated, and the result only applies to the calibration item as received.

Note5: Calibration item/ parameter marked with * is out of scope of Cal Lab Limited (A2LA 3815.01).

Calibrated By:

Checked and Approved By:

Company Chop:

2D 上/20 校正 實驗室。 有限公司。

Wing Cheng

Warren Yeung

loner fe

Certificate Issue Date: 12 February 2025

CT-BEG-04

*** End of Certificate ***

1. The certificate shall not be reproduced except in full, without written approval of Cal Lab Limited

2. The certificate is issued subject to the latest Terms and Conditions, available at our web site

Landfill Gas

Asia Pacific Industrial Safety Equipment

Tel: 2592 2100

Fax: 3165 8960

Calibration Certificate

Cert. Ref. No.:

BLS/G7C/01/1283

Date: 27/1/2025

Customer:

New Concepts Eng Dev Ltd

Attn:

Victor

Tel: 9840 3136 Fax:

User Details:

Gas Detector Model: Blackline Safety G7C-EU2

Serial No:

3571220922

CART ID: 334341

Calibration Record:

Act. Code:

L6R 7HB

Inpection before calibration	Visual inspection	Functional Test
Basic Unit - Case, Clip & Display etc.	OK	OK
Battery and charge etc.	ОК	OK
Motorized Pump	ОК	ОК
Other items	 X	•

Type of Sensor	Expiry Date
Oxygen Sensor	
CO Sensor	
H2S Sensor	
Combustible (LEL) Sensor	
Carbon Dioxide (CO2) Sensor	

Type of calibration D	ate of calibration	H2S (ppm)	CO (ppm)	O2 (%)	LEL(%)	CO2 (ppm)
SENSOR Calibration	17/2/2025	25	100	18	50	5000
		OK	ок	ОК	ОК	ОК

Calibratrion remarks:

Battery full recharge needed. Warning: Battery health and accuracy of LEL-MPS & Oxygen sensor's reading could adversely affected in prolonged low battery state.

Blackline Safety Recommended Next Calibration Date*:

26/7/2025

*The calibration Schedule can be configured to match your company's safety policy and Blackline Safety recommends not exceeding 180 days without a calibration

IMPORTANT NOTES TO Blackline Safety GAS DETECTOR USERS

USERS MUST READ THE OPERATOR'S MANUAL THOROUGHLY BEFORE OPERATING THIS EQUIPMENT AND FOLLOW THEIR OWIN SAFETY SUPERVISOR'S INSTRUCTION TO WORK.

All gas detection instrumentation on the market requires periodic calibration to accurately measure gas. Calibration is only as accurate as the test gas used. Blackline Safety quality test gases are made to the highest accuracy and trace-ability to N.I.S.T. Standard.

Calibration By: -

Mind Lau

Services Hotline: 2592 2100

Appendix F Monitoring Results

Air Quality

1-hour TSP Concentration (µg/m³) at Location AM1

Data	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Compling Time (2)	Compling Time (2)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactor	weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
04/07/2025	Sibata LD-5R	882106	1.0437	Fine	8:35	9:35	10:35	29	29	27	28		
10/07/2025	Sibata LD-5R	882106	1.0437	Fine	8:15	9:15	10:15	30	31	29	30		
16/07/2025	Sibata LD-5R	0Z4545	1.0451	Fine	8:36	9:36	10:36	29	21	24	25	285	500
22/07/2025	Sibata LD-5R	882106	1.0437	Fine	8:20	9:20	10:20	30	29	27	29		
28/07/2025	Sibata LD-5R	0Z4545	1.0451	Fine	8:35	9:35	10:35	44	45	46	45		
-	•						Average		31				

Average 31

Max. 46

Min. 21

1-hour TSP Concentration (µg/m³) at Location AM2

Date	Equipment	Equipment	K-factor	Weather	Complian Time (4)	Compline Time (2)	Compline Time (2)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	K-Iactor	vveather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
04/07/2025	Sibata LD-5R	0Z4545	1.0451	Fine	8:50	9:50	10:50	39	38	40	39		
10/07/2025	Sibata LD-5R	942532	1.1020	Fine	8:30	9:30	10:30	42	41	40	41		
16/07/2025	Sibata LD-5R	942532	1.1020	Fine	8:19	9:19	10:19	40	41	42	41	279	500
22/07/2025	Sibata LD-5R	942532	1.1020	Fine	8:39	9:39	10:39	41	44	42	42		
28/07/2025	Sibata LD-5R	942532	1.1020	Fine	8:13	9:13	10:13	31	34	29	31		
							Average		39				
							Max.		44				
							Min.		29				

1-hour TSP Concentration (µg/m³) at Location AM3

Date	Equipment	Equipment	K-factor	Weather	Sampling Time (1)	Sampling Time (2)	Sampling Time (3)	Reading (1)	Reading (2)	Reading (3)	Average	Action Level	Limit Level
Date	Brand & Model	Serial No.	IX-Idetoi	vvcatno	Camping Time (1)	Camping Time (2)	Camping Time (6)	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
04/07/2025	Sibata LD-5R	942532	1.1020	Fine	8:10	9:10	10:10	45	46	40	44		
10/07/2025	Sibata LD-5R	0Z4545	1.0451	Fine	8:02	9:02	10:02	51	56	50	52		
16/07/2025	Sibata LD-5R	882106	1.0437	Fine	8:09	9:09	10:09	54	52	56	54	285	500
22/07/2025	Sibata LD-5R	0Z4545	1.0451	Fine	8:01	9:01	10:01	59	60	62	60		
28/07/2025	Sibata LD-5R	882106	1.0437	Fine	8:09	9:09	10:09	51	56	54	54		

Average 53

Max. 62

Min. 40

The Summary of TSP 24-hour Concentration (µg/m³) at Location AM1

Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elaps	Time	Sampling Time	Averaged Flow Rate	Averaged Flow Rate	Total Flow Volume	Filter \	Veight (g)	Particulate weight	Concentration	Action Level	Limit Level
Start Date	weather Condition	(℃)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
4/7/2025	Fine	30.7	1004.4	5919.36	5943.36	1440	41	1.0	1383	2.7051	2.7997	0.0946	68		
10/7/2025	Fine	27.1	997.8	5967.15	5991.15	1440	41	0.9	1356	2.7088	2.8054	0.0966	71		
16/7/2025	Fine	31.2	1003.6	6014.62	6038.62	1440	41	0.9	1354	2.6968	2.7819	0.0851	63	164	260
22/7/2025	Fine	28.5	1002.6	6061.60	6085.60	1440	41	0.9	1361	2.7037	2.7925	0.0888	65		
28/7/2025	Fine	29.0	997.5	6109.48	6133.48	1440	41	1.0	1375	2.7062	2.8043	0.0981	71		
												Average	68		
												Min	63		
												Max	71		

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM2

	Avg Air Temp	Ave Atmosphania Duccevina	El											
Weather Condition	Avg All Tellip	Avg Atmospheric Pressure	Elaps	e Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter V	Veight (g)	Particulate weight	Concentration	Action Level	Limit Level
weather Condition	(°C)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
Fine	30.7	1004.4	5728.64	5752.64	1440	40	1.0	1404	2.7159	2.8211	0.1052	75		
Fine	27.1	997.8	5776.30	5800.30	1440	40	1.0	1403	2.6898	2.7935	0.1037	74		
Fine	31.2	1003.6	5824.19	5848.19	1440	41	1.0	1421	2.6892	2.7855	0.0963	68	152	260
Fine	28.5	1002.6	5871.87	5895.87	1440	40	1.0	1407	2.6908	2.7918	0.1010	72		
Fine	29.0	997.5	5919.84	5943.84	1440	41	1.0	1417	2.7087	2.8166	0.1079	76		
											Average	73		
											Min	68		
											May	76		
		Fine 28.5	Fine 28.5 1002.6	Fine 28.5 1002.6 5871.87	Fine 28.5 1002.6 5871.87 5895.87	Fine 28.5 1002.6 5871.87 5895.87 1440	Fine 28.5 1002.6 5871.87 5895.87 1440 40	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407 2.6908	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407 2.6908 2.7918	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407 2.6908 2.7918 0.1010 Fine 29.0 997.5 5919.84 5943.84 1440 41 1.0 1417 2.7087 2.8166 0.1079 Average Min	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407 2.6908 2.7918 0.1010 72 Fine 29.0 997.5 5919.84 5943.84 1440 41 1.0 1417 2.7087 2.8166 0.1079 76 Average 73 Min 68	Fine 28.5 1002.6 5871.87 5895.87 1440 40 1.0 1407 2.6908 2.7918 0.1010 72 Fine 29.0 997.5 5919.84 5943.84 1440 41 1.0 1417 2.7087 2.8166 0.1079 76 Average 73

The Summary of 24-hour TSP Concentration (µg/m³) at Location AM3

	0. 2. 1100. 10. 001100.	itiation (pg/m / at	200ation / and												
Start Date	Weather Condition	Avg Air Temp	Avg Atmospheric Pressure	Elaps	e Time	Sampling Time	Averaged Flow Rate	Flow Rate	Total Flow Volume	Filter \	Veight (g)	Particulate weight	Concentration	Action Level	Limit Level
Start Date	weather Condition	(℃)	(hPa)	Initial	Final	(minutes)	(cfm)	(m³/min)	(m ³)	Initial	Final	(g)	(µg/m³)	(µg/m³)	(µg/m3)
4/7/2025	Fine	30.7	1004.4	6536.66	6560.66	1440	42	0.9	1304	2.7109	2.8160	0.1051	81		
10/7/2025	Fine	27.1	997.8	6584.37	6608.37	1440	41	0.9	1280	2.6763	2.7905	0.1142	89	1	
16/7/2025	Fine	31.2	1003.6	6631.51	6655.51	1440	41	0.9	1279	2.6914	2.7939	0.1025	80	163	260
22/7/2025	Fine	28.5	1002.6	6679.38	6703.38	1440	42	0.9	1307	2.6937	2.7933	0.0996	76	1	
28/7/2025	Fine	29.0	997.5	6725.87	6749.87	1440	42	0.9	1296	2.7059	2.8134	0.1075	83		
												Average	82		
												Min	76		
												Max	89		
Remarks:														-	

Remarks:
1. Orange Text equal to exceed Action Level
2. Red Text equal to exceed Limit Level

Noise

Impact Phase Construction Noise Monitoring Data at Location NM1a

Date	Weather	Wind speed	Start Time	End Time				L _e	_q (dB(A	())				L 10 (0	IB(A))					L 90 (C	IB(A))		
Date	vveatner	m/s	Start Tille	Ena rime	1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
04/07/2025	Fine	1.2	8:30	9:00	60.1	59.2	58.6	59.9	60.2	60.5	59.8	62.2	60.2	59.9	62.2	62.4	61.9	59.2	57.6	57.5	58.5	59.1	58.6
10/07/2025	Fine	1.4	8:09	8:39	59.6	58.5	60.4	61.2	60.3	60.0	60.1	61.9	59.9	62.9	62.5	62.5	61.9	58.3	57.6	58.5	60.2	58.6	58.4
15/07/2025	Fine	1.1	8:02	8:32	59.4	60.3	58.9	58.2	60.4	60.6	59.7	61.2	62.4	60.9	60.4	62.1	62.9	58.2	59.2	57.2	57.1	59.1	58.3
22/07/2025	Fine	1.2	8:10	8:40	58.4	59.2	57.6	57.8	59.4	58.6	58.6	60.1	61.4	59.5	59.6	60.6	60.9	57.0	58.1	56.6	55.9	57.6	57.9
28/07/2025	Fine	1.3	8:00	8:30	59.4	61.2	58.1	58.6	60.3	61.4	60.0	60.6	62.5	60.3	59.9	62.2	62.9	57.9	60.3	57.6	57.1	59.3	60.4

Average	59.7	
Baseline Level	55.4	
Action Level	When one	valid documented complaint is received
Limit Level	75	

Impact Phase Construction Noise Monitoring Data at Location NM2a

Date W	Weather	Wind speed	Start Time	End Time	L_{eq} (dB(A))					L ₁₀ (dB(A))					L ₉₀ (dB(A))								
	vveatilei	m/s	Start Time		1st	2nd	3rd	4th	5th	6th	Overall (30min)	1st	2nd	3rd	4th	5th	6th	1st	2nd	3rd	4th	5th	6th
04/07/2025	Fine	1.1	10:30	11:00	45.6	46.2	45.9	44.5	44.2	45.2	45.3	47.2	48.2	48.1	46.2	45.9	47.6	43.4	44.2	43.6	42.4	42.6	43.6
10/07/2025	Fine	1.3	10:45	11:15	45.6	44.5	49.2	48.6	47.5	48.2	47.6	47.2	46.2	51.3	50.2	48.6	49.2	43.6	43.2	47.2	47.2	46.5	46.2
15/07/2025	Fine	1.0	11:59	12:29	44.2	43.2	42.9	44.5	43.0	43.6	43.6	45.2	44.9	44.1	40.1	44.6	44.9	42.5	41.4	40.3	43.1	42.1	41.4
22/07/2025	Fine	1.0	11:50	12:20	41.2	43.2	43.9	44.1	44.9	43.9	43.7	42.4	45.2	44.9	45.2	45.9	44.4	40.2	41.2	42.9	42.6	43.2	42.1
28/07/2025	Fine	1.1	10:39	11:09	54.3	53.6	53.7	54.2	55.1	56.2	54.6	56.4	55.6	54.9	55.2	56.6	57.9	53.0	52.1	51.9	52.5	53.1	55.1

Average	49.3	
Baseline Level	54.5	
Action Level	When one	valid documented complaint is received
Limit Level	75	

Water Quality

Monitoring Location: WM1

	Date	Time	Weather	Water Depth (m)	Water Flow (L/s)	Water Temperature		DO (mg/L) Value Action Level Limit Level V			рН			Turbidity (NTU)			SS (mg/L)		
						(0)	Value			Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	
15	Jul-25	11:47	Fine	0.1	0.2	25.2	7.5	<7.4	<4	6.8	>7.7	>7.8	4.7	>9.2	>9.5	4.4	>9.7	>11.4	

Monitoring Location: WM2

Date	Depth (m)		Water Temperature	DO (mg/L)			рН			Turbidity (NTU)			SS (mg/L)				
					(6)	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level	Value	Action Level	Limit Level
15-Jul-25	8:40	Fine	0.30	0.2	25.2	7.7	<5	<4	6.9	>7.6	>7.7	62.6	>108.3	>108.9	65.7	>94.5	>94.7

Remarks

- 1. Sample will be grabbed on surface when the water depth is less than 1m.
- 2. "TBC" equal to "To be confirm"
- Orange Text equal to exceed Action Level
 Red Text equal to exceed Limit Level

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client : ACUMEN LABORATORY AND TESTING LIMITED

: MR. HUNTINGTON HUI

Address : WORKSHOP 04, 7/F, THE WHITNEY NO.183

WAI YIP STREET, KWUN TONG, KOWLOON

E-mail : Huntington.Hui@aurecongroup.com

Telephone : --Facsimile : ---

Contact

Project : NENTX

Order number : ----

C-O-C number : ----

Site

: ALS Technichem (HK) Pty Ltd

Page

: 1 of 9

Contact : R

: Richard Fung

Work Order

: HK2530143

Yip Street, Kwai Chung, N.T., Hong Kong

: 11/F., Chung Shun Knitting Centre, 1 - 3 Wing

E-mail

Quote

number

Laboratory

Address

: richard.fung@alsglobal.com

Telephone Facsimile : +852 2610 1044

: +852 2610 2021

Date Samples Received : 1

: 15-Jul-2025

: HKE/2751/2022_V5

: 29-Jul-2025

No. of samples received

No. of samples analysed : 2

: 2

This report shall not be reproduced except in full without the written approval of the laboratory. This document has been signed by those names that appear on this report and are the authorised signatories.

Signatories / / 7

Position

Authorised results for

Issue Date

Fung Lim Chee, Richard

Managing Director

Inorganics

Fung Lim Chee, Richard

Managing Director

Metals ENV

A

Ng Sin Kou, May

Laboratory Manager

Microbiology_ENV

Page Number : 2 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

General Comments

This report supersedes any previous report(s) with the same work order number. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. Testing period is from 15-Jul-2025 to 28-Jul-2025.

Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

Specific Comments for Work Order: HK2530143

Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.

Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the item(s) tested.

Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in chilled condition.

Microbiological sample(s) was/ were collected in 250mL sterile plastic bottles containing sodium thiosulfate. Sample(s) arrived at the laboratory at 14:55.

NOT DETECTED denotes result(s) is (are) less than the Limit of Report (LOR).

ED037 - Titration end point for Total Alkalinity is pH 4.5 while end point for Total Alkalinity <20mg/L is pH 4.2.

Water sample(s) digested by in-house method E-3005 prior to the determination of total metals. The in-house method is developed based on USEPA method 3005.

EK058A - Nitrate is the difference of Nitrite + Nitrate and Nitrite.

Page Number

3 of 9

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

Analytical Results

Sub-Matrix: WATER			Sample ID	WM 1	WM2	 	
		Samplii	ng date / time	15-Jul-2025	15-Jul-2025	 	
Compound	CAS Number	LOR	Unit	HK2530143-001	HK2530143-002	 	
EA/ED: Physical and Aggregate Properties							
EA025: Suspended Solids (SS)		0.1	mg/L	4.4	65.7	 	
ED037: Total Alkalinity as CaCO3		1	mg/L	12	37	 	
ED/EK: Inorganic Nonmetallic Parameters							
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	2	24	 	
ED045K: Chloride	16887-00-6	0.5	mg/L	6	5	 	
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	0.05	0.09	 	
EK058A: Nitrate as N	14797-55-8	0.01	mg/L	0.04	0.22	 	
EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.2	 	
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	 	
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	 	
EP: Aggregate Organics							
EP005: Total Organic Carbon		1	mg/L	3	2	 	
EP020: Oil & Grease		5	mg/L	<5	<5	 	
EP026C: Chemical Oxygen Demand		5	mg/L	8	6	 	
EP030: Biochemical Oxygen Demand		2	mg/L	<2	<2	 	
EG: Metals and Major Cations - Total							
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	 	
EG020: Copper	7440-50-8	1	μg/L	3	2	 	
EG020: Lead	7439-92-1	1	μg/L	<1	4	 	
EG020: Manganese	7439-96-5	1	μg/L	17	887	 	
EG020: Nickel	7440-02-0	1	μg/L	<1	<1	 	
EG020: Zinc	7440-66-6	10	μg/L	14	26	 	
EG032: Calcium	7440-70-2	50	μg/L	2580	19100	 	****
EG032: Iron	7439-89-6	10	μg/L	340	2390	 	
EG032: Magnesium	7439-95-4	50	μg/L	440	1410	 	
EG032: Potassium	7440-09-7	50	μg/L	620	3290	 	
EG032: Sodium	7440-23-5	50	μg/L	6060	5340	 	
EM: Microbiological Testing							
EM002: E. coli		1	CFU/100mL	720	640	 	

Page Number

4 of 9

Client

ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

Sub-Matrix: WATER			Sample ID	WM 1	WM2	 	
		Sampli	ng date / time	15-Jul-2025	15-Jul-2025	 	
Compound	CAS Number	LOR	Unit	HK2530143-001	HK2530143-002	 	
EM: Microbiological Testing - Continued							
EM003: Total Coliforms		1	CFU/100mL	4700	4300	 	

----- END OF REPORT -----

5 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

Laboratory Duplicate (DUP) Report

In the Laboratory Duplicate (DUP) report, RPD (%) of sample duplicate reporting "0.0" denotes that the difference between unrounded results of the sample and its duplicate analyses is less than the value of the limit of reporting of the specific testing. The RPD (%) meets the quality control requirement of the corresponding testing procedure.

Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	
EA/ED: Physical and A	ggregate Properties (QC Lo	ot: 6723035)							
HK2530143-001	WM 1	ED037: Total Alkalinity as CaCO3		1	mg/L	12	12	0.0	
EA/ED: Physical and A	ggregate Properties (QC Lo	ot: 6727281)							
HK2530537-001	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	5.6	5.6	0.0	
HK2530537-002	Anonymous	EA025: Suspended Solids (SS)		0.5	mg/L	5.8	5.4	6.6	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6722617)							
HK2530125-001	Anonymous	EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.12	0.12	0.0	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6727194)							
HK2530143-001	WM 1	EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2	<2	0.0	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6735271)							
HK2530143-001	WM 1	ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	2	2	0.0	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6735272)							
HK2530143-001	WM 1	ED045K: Chloride	16887-00-6	1	mg/L	6	6	0.0	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6736643)							
HK2531153-001	Anonymous	EK055K: Ammonia as N	7664-41-7	0.01	mg/L	12.1	12.6	3.9	
ED/EK: Inorganic Nonn	netallic Parameters (QC Lo	t: 6741653)							
HK2530143-001	WM 1	EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.4	0.5	0.0	
EP: Aggregate Organic	s (QC Lot: 6735546)								
HK2530840-005	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	
EP: Aggregate Organic	s (QC Lot: 6737836)								
HK2530270-001	Anonymous	EP026C: Chemical Oxygen Demand		5	mg/L	<5	<5	0.0	
EG: Metals and Major (Cations - Total (QC Lot: 67	24308)							
HK2530143-002	WM2	EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	<0.2	0.0	
		EG020: Copper	7440-50-8	1	μg/L	2	2	0.0	
		EG020: Lead	7439-92-1	1	μg/L	4	4	0.0	
		EG020: Manganese	7439-96-5	1	μg/L	887	919	3.5	
		EG020: Nickel	7440-02-0	1	μg/L	<1	<1	0.0	
		EG020: Zinc	7440-66-6	10	μg/L	26	27	5.0	
EG: Metals and Maior (Cations - Total (QC Lot: 672	24309)	·				'		

6 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate	RPD (%)				
sample ID							Result					
EG: Metals and Major Cati	ons - Total (QC Lot: 6724309) -	Continued										
HK2530143-002	WM2	EG032: Iron	7439-89-6	10	μg/L	2390	2380	0.8				
		EG032: Calcium	7440-70-2	50	μg/L	19100	19300	0.8				
		EG032: Magnesium	7439-95-4	50	μg/L	1410	1400	0.0				
		EG032: Potassium	7440-09-7	50	μg/L	3290	3290	0.0				
		EG032: Sodium	7440-23-5	50	μg/L	5340	5400	1.1				

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: WATER			Method Blank (ME	othod Blank (MB) Report Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report					DCS) Report		
					Spike Concentration	Spike Re	covery (%)	Recove	nry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EA/ED: Physical and Aggregate Properties (QC	Lot: 6723035)										
ED037: Total Alkalinity as CaCO3		1	mg/L	<1	50 mg/L	104		95.0	105		
EA/ED: Physical and Aggregate Properties (QC	Lot: 6727281)										
EA025: Suspended Solids (SS)		0.5	mg/L	<0.5	10 mg/L	95.0		85.0	115		
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6722617)										
EK071K: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	97.6		90.2	107		
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6727194)										
EK086: Sulphite as SO3 2-	14265-45-3	2	mg/L	<2							
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6735271)										
ED041K: Sulphate as SO4 - Turbidimetric		1	mg/L	<1	5 mg/L	103		89.8	117		
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6735272)										
ED045K: Chloride	16887-00-6	1	mg/L	<1	10 mg/L	96.3		91.8	106		
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6736643)										
EK055K: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	0.5 mg/L	108		85.2	112		
ED/EK: Inorganic Nonmetallic Parameters (QC L	_ot: 6741653)										
EK061A: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.5 mg/L	101		85.0	115		
EP: Aggregate Organics (QC Lot: 6723577)											
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	105		85.0	115		
EP: Aggregate Organics (QC Lot: 6723579)											

: 7 of 9

Client :

ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

ALS

Matrix: WATER		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
					Spike Concentration	Spike Red	covery (%)	Recove	ry Limits(%)	RP	D (%)
Method: Compound	CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EP: Aggregate Organics (QC Lot: 6723579) - C	Continued										
EP030: Biochemical Oxygen Demand			mg/L		198 mg/L	100		85.0	115		
EP: Aggregate Organics (QC Lot: 6734971)											
EP020: Oil & Grease		2	mg/L	<2	20 mg/L	88.8		85.0	115		
EP: Aggregate Organics (QC Lot: 6735546)											
EP005: Total Organic Carbon		1	mg/L	<1	5 mg/L	105		85.0	115		
				<1	100 mg/L	98.9		84.1	117		
EP: Aggregate Organics (QC Lot: 6737836)											
EP026C: Chemical Oxygen Demand			mg/L		25 mg/L	106		90.0	111		
					250 mg/L	99.5		94.3	104		
EG: Metals and Major Cations - Total (QC Lot: 6	6724308)										
EG020: Cadmium	7440-43-9	0.2	μg/L	<0.2	5 μg/L	105		85.0	109		
EG020: Copper	7440-50-8	1	μg/L	<1	50 μg/L	103		90.0	111		
EG020: Lead	7439-92-1	1	μg/L	<1	50 μg/L	101		89.0	111		
EG020: Manganese	7439-96-5	1	μg/L	<1	50 μg/L	104		85.0	115		
EG020: Nickel	7440-02-0	1	μg/L	<1	50 μg/L	108		87.0	110		
EG020: Zinc	7440-66-6	10	μg/L	<10	50 μg/L	104		86.0	114		
EG: Metals and Major Cations - Total (QC Lot: 6	6724309)										
EG032: Calcium	7440-70-2	50	μg/L	<50	2000 μg/L	105		85.0	115		
EG032: Iron	7439-89-6	10	μg/L	<10	2000 μg/L	106		85.0	115		
EG032: Magnesium	7439-95-4	50	μg/L	<50	2000 μg/L	102		85.0	115		
EG032: Potassium	7440-09-7	50	μg/L	<50	2000 μg/L	101		85.0	115		
EG032: Sodium	7440-23-5	50	μg/L	<50	2000 μg/L	100.0		85.0	115		

: 8 of 9

Client : ACUMEN LABORATORY AND TESTING LIMITED

Work Order HK2530143

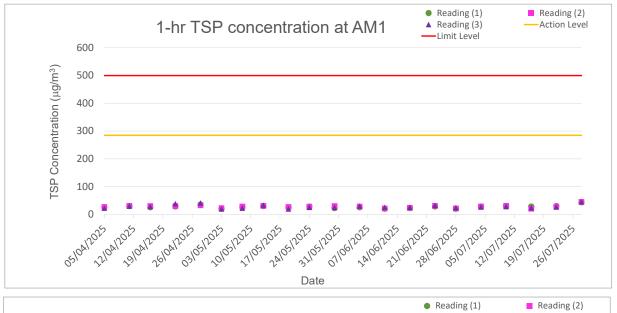
Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

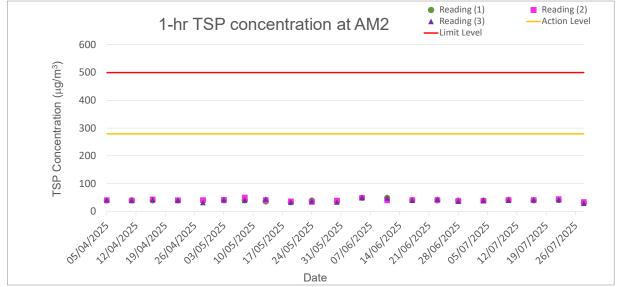
Matrix: WATER					Matrix Sp.	ike (MS) and Matrix	Spike Duplic	ate (MSD) Re	port	
				Spike	Spike R	ecovery (%)	Recovery	Limits (%)	RPD	(%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 67226	617)								
HK2530125-001	Anonymous	EK071K: Reactive Phosphorus as P	14265-44- 2	0.5 mg/L	99.4		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 67352	271)								
HK2530143-001	WM 1	ED041K: Sulphate as SO4 - Turbidimetric		5 mg/L	96.3		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 67352	272)								
HK2530143-001	WM 1	ED045K: Chloride	16887-00- 6	5 mg/L	94.2		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 67366	543)								
HK2531153-001	Anonymous	EK055K: Ammonia as N	7664-41-7	50 mg/L	110		75.0	125		
ED/EK: Inorgani	c Nonmetallic Parameters (QC Lot: 67416	653)								
HK2530143-001	WM 1	EK061A: Total Kjeldahl Nitrogen as N		0.5 mg/L	95.9		75.0	125		
EP: Aggregate C	Organics (QC Lot: 6735546)									
HK2530840-005	Anonymous	EP005: Total Organic Carbon		5 mg/L	94.9		75.0	125		
EP: Aggregate C	Organics (QC Lot: 6737836)									
HK2530270-001	Anonymous	EP026C: Chemical Oxygen Demand		10 mg/L	100		75.0	125		
EG: Metals and	Major Cations - Total (QC Lot: 6724308)									
HK2530143-001	WM 1	EG020: Cadmium	7440-43-9	5 μg/L	109		75.0	125		
		EG020: Copper	7440-50-8	50 μg/L	93.5		75.0	125		
		EG020: Lead	7439-92-1	50 μg/L	103		75.0	125		
		EG020: Manganese	7439-96-5	50 μg/L	106		75.0	125		
		EG020: Nickel	7440-02-0	50 μg/L	110		75.0	125		
		EG020: Zinc	7440-66-6	50 μg/L	98.8		75.0	125		
EG: Metals and	Major Cations - Total (QC Lot: 6724309)									
HK2530143-001	WM 1	EG032: Calcium	7440-70-2	2000 μg/L	98.7		75.0	125		
		EG032: Iron	7439-89-6	2000 μg/L	101		75.0	125		
		EG032: Magnesium	7439-95-4	2000 μg/L	97.7		75.0	125		
		EG032: Potassium	7440-09-7	2000 μg/L	101		75.0	125		

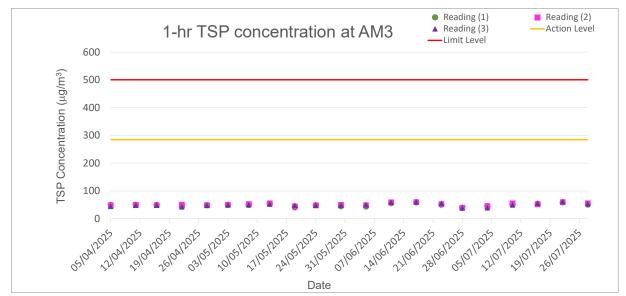
: 9 of 9

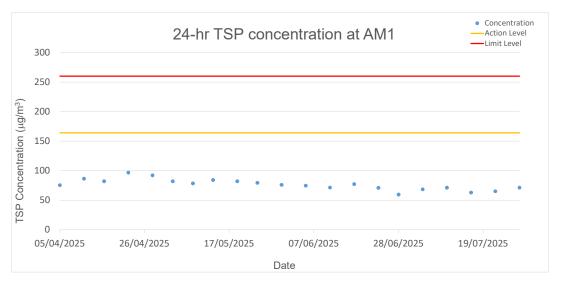
Client

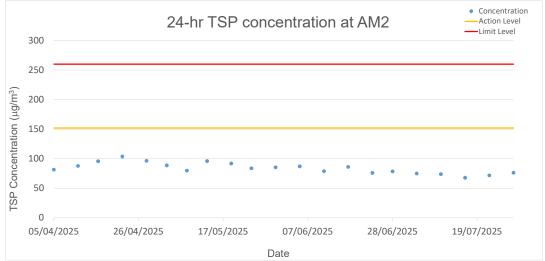
ACUMEN LABORATORY AND TESTING LIMITED

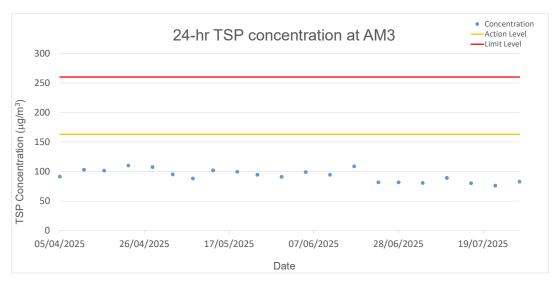

Work Order HK2530143

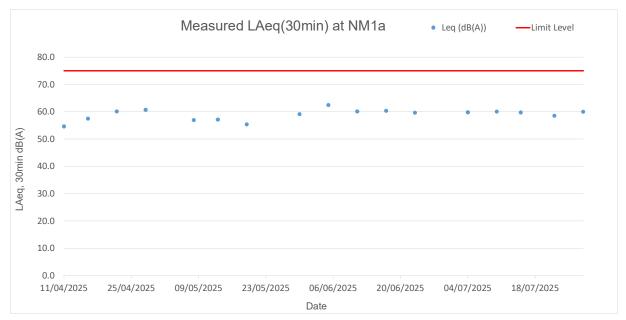


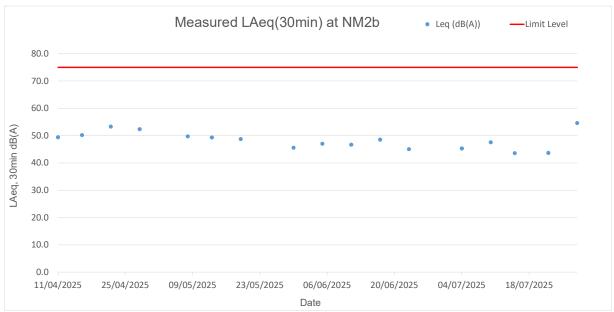

Matrix: WATER			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report								
				Spike	Spike Re	ecovery (%)	Recovery	Limits (%)	RPD	(%)	
Laboratory	Sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control	
sample ID										Limit	
EG: Metals and I	Major Cations - Total (QC Lot: 6724309)	- Continued									
HK2530143-001	WM 1	EG032: Sodium	7440-23-5	2000 μg/L	97.6		75.0	125			

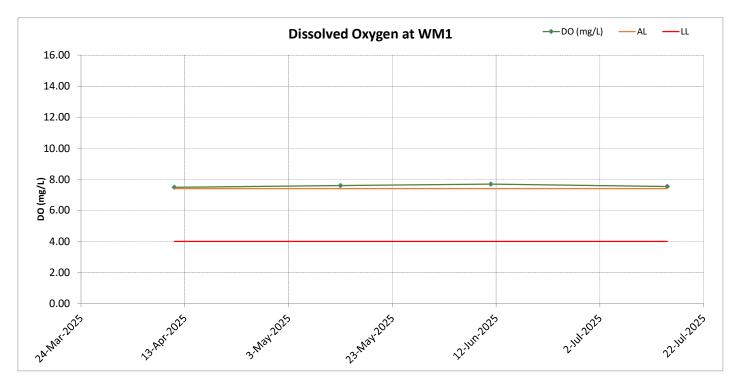

Appendix G Graphical Presentations

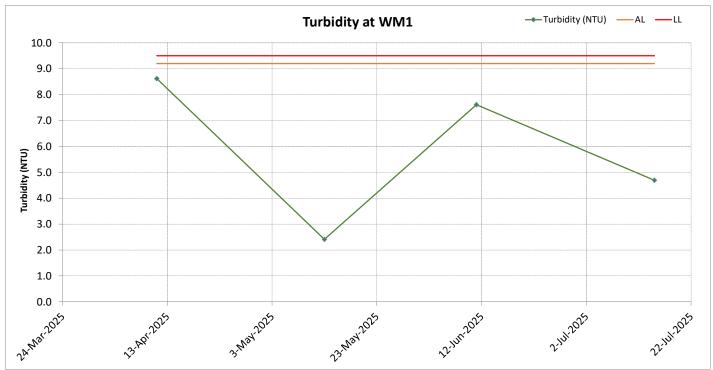

Air Quality

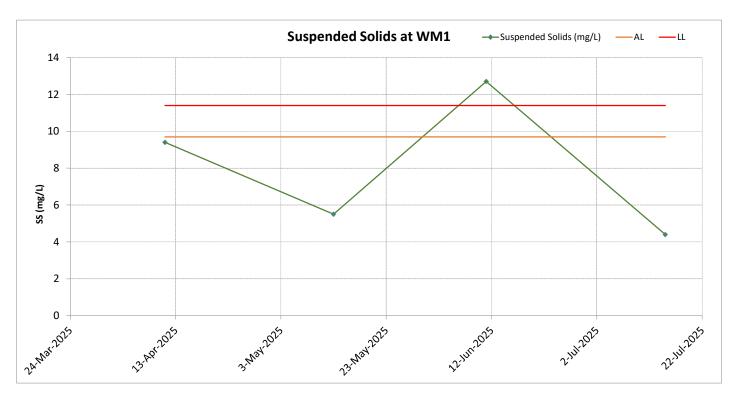


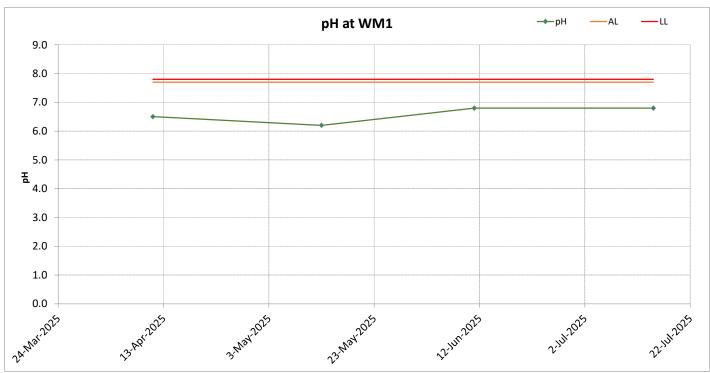


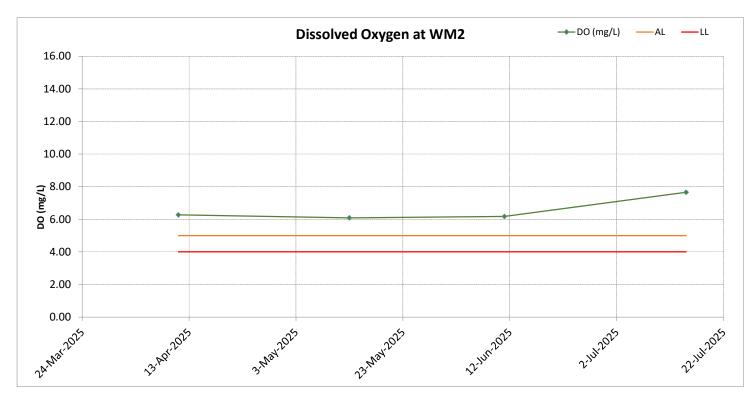


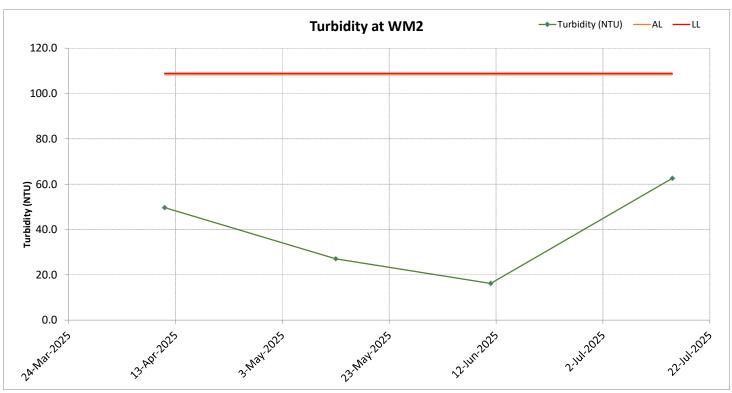


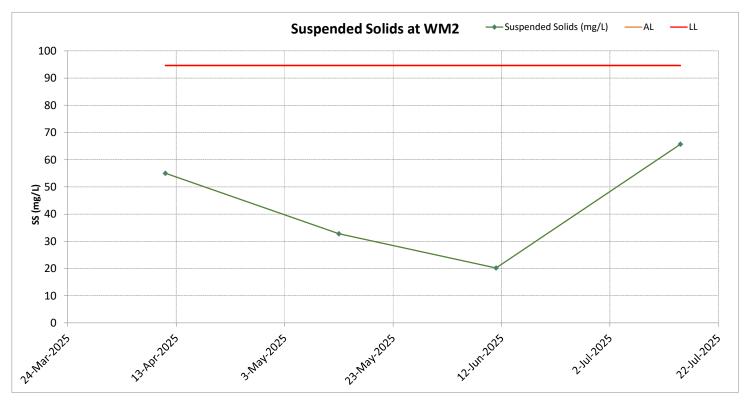

Noise

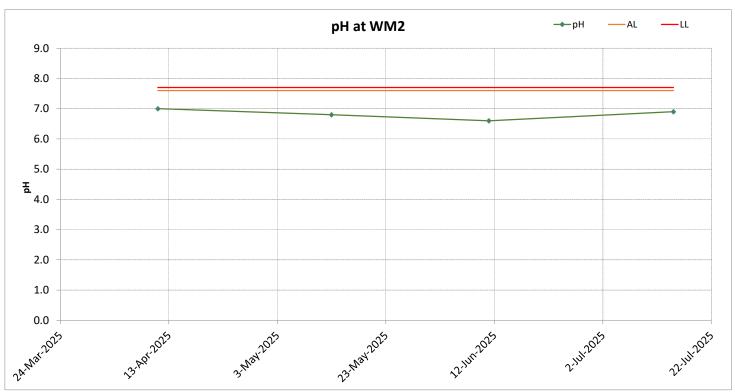





Water Quality







Appendix H Notification of Environmental Quality Limits Exceedance

Notification of Environmental Quality Limits Exceedance

Air Quality Monitoring - Construction Dust

		1-ł	nr TSP Exce	edance Co	unt	24-hr TSP Exceedance Count						
Dust Monitoring	Level	Reportir	ng period		ate project date	Reportir	ng period	Accumulate project to date				
Station	Exceedance	Project related	Non- project related	Project related	Non- project related	Project related	Non- project related	Project related	Non- project replated			
0.044	Action	0	0	0	0	0	0	0	2			
AM1	Limit	0	0	0	0	0	0	0	3			
A N 4 O	Action	0	0	0	0	0	0	0	0			
AM2	Limit	0	0	0	0	0	0	0	0			
A N 4 O	Action	0	0	0	0	0	0	0	4			
AM3	Limit	0	0	0	0	0	0	0	3			

Noise Monitoring

		LAed	(30mins) Ex	xceedance C	ount		
Noise Monitoring	Level	Reportir	ng period	Accumulate project to date			
Station	Exceedance	Project related	Non- project related	Project related	Non- project related		
NINAA -	Action	0	0	0	0		
NM1a	Limit	0	0	0	0		
NIMO-	Action	0	0	0	0		
NM2a	Limit	0	0	0	0		

Notification of Environmental Quality Limits Exceedance

Surface Water Monitoring

Surface			Exceedance Count															
Water	Level		Reportir			ng period				Accumulate project to date								
Quality Monitoring	Exceedance		Project	t related	i	No	n-proje	ct repla	ited		Project	related	ı	No	n-proje	ct repla	ited	
Station		DO	рН	Turb	SS	DO	рН	Turb	SS	DO	рН	Turb	SS	DO	рН	Turb	SS	
WM1	Action	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
VVIVII	Limit	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
\A/\AQ	Action	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
WM2	Limit	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	

Remarks:

- 1. "DO" equal to Dissolved Oxygen
- 2. "Turb" equal to Turbidity
- 3. "SS" equal to Suspended Solids

Landfill Gas (LFG) Monitoring

		Exceedance Count												
LFG	Level		F	Reportir	ng perio	d		Accumulate project to date						
Monitoring Station	Exceedance	Project related			Non-project replated			Project related			Non-project replated			
		CH ₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	
Portion A +50 mpD to	Action	0	0	0	0	0	0	0	0	0	0	0	0	
+70 mpD Platform	Limit	0	0	0	0	0	0	0	0	0	0	0	0	
Portion	Action	0	0	0	0	0	0	0	0	0	0	0	0	
B2/E1	Limit	0	0	0	0	0	0	0	0	0	0	0	0	

Appendix I Wind Data

Date	Time	Wind	
(YYYYMMDD)	l	Speed	Wind Direction
(TTTTIVIIVIDD)	(HH:IVIIVI)	(m/s)	
20250701	00:00	0.9	ESE
20250701	00:15	1.3	SE
20250701	00:30	0.4	NW
20250701	00:45	0.0	NNW
20250701	01:00	0.4	NE
20250701	01:15	0.9	SE
20250701	01:30	0.9	SE
20250701	01:45	2.2	SE
20250701	02:00	2.7	SE
20250701	02:15	1.8	SE
20250701	02:30	1.3	SE
20250701	02:45	1.8	SE
20250701	03:00	1.3	SE
20250701	03:15	0.9	ESE
20250701	03:30	1.3	SE
20250701	03:45	1.8	SE
20250701	04:00	1.3	SE
20250701	04:15	1.3	SE
20250701	04:30	0.9	ESE
20250701	04:45	0.9	SE
20250701	05:00	0.9	SE
20250701	05:15	0.9	SE
20250701	05:30	1.3	SE
20250701	05:45	0.9	SE
20250701	06:00	0.9	SE
20250701	06:15	0.4	SE
20250701	06:30	0.9	SE
20250701	06:45	1.3	SE
20250701	07:00	0.9	SE
20250701	07:15	0.9	SE
20250701	07:30	0.9	SE
20250701	07:45	0.9	SE
20250701	08:00	0.9	SE
20250701	08:15	0.4	ENE
20250701	08:30	0.4	SE
20250701	08:45	0.9	ESE
20250701	09:00	0.4	NNW
20250701	09:15	0.4	NE
20250701	09:30	0.4	NE
20250701	09:45	0.9	SE
20250701	10:00	1.8	SE
20250701	10:15	1.8	SE
20250701	10:30	1.8	SE
20250701	10:45	2.7	SE
20250701	11:00	1.8	SE
20250701	11:15	1.3	SE
20250701	11:30	1.3	SE
20250701	11:45	0.9	ESE

		Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	-	Willia Direction
20250701	12:00	(m/s) 1.3	SSE
	12:15	1.3	SE
20250701		0.4	E E
20250701	12:30		NE
20250701	12:45	0.9	
20250701	13:00	0.9	SE
20250701	13:15	1.3	ESE
20250701	13:30	1.3	SE
20250701	13:45	0.9	ESE
20250701	14:00	0.9	SE
20250701	14:15	0.4	ESE
20250701	14:30	0.4	ENE
20250701	14:45	0.4	ENE
20250701	15:00	0.4	ENE
20250701	15:15	0.9	SE
20250701	15:30	1.3	SE
20250701	15:45	1.3	SE
20250701	16:00	1.8	SE
20250701	16:15	0.9	SE
20250701	16:30	1.8	SE
20250701	16:45	2.2	SE
20250701	17:00	0.9	N
20250701	17:15	0.4	NNE
20250701	17:30	0.4	SSE
20250701	17:45	0.4	NNW
20250701	18:00	0.4	N
20250701	18:15	0.4	N
20250701	18:30	0.4	E
20250701	18:45	0.4	ESE
20250701	19:00	0.4	SE
20250701	19:15	0	E
20250701	19:30	0.9	N
20250701	19:45	0.4	NNE
20250701	20:00	0	SSE
20250701	20:15	1.3	SE
20250701	20:30	0.9	SE
20250701	20:45	1.3	SE
20250701	21:00	0.4	SE
20250701	21:15	0.9	SE
20250701	21:30	0.9	E
20250701	21:45	0.4	SE
20250701	22:00	0.4	NNE
20250701	22:15	0.4	SSE
20250701	22:30	0.4	E
20250701	22:45	0.9	NE NE
20250701	23:00	0.9	SE
20250701	23:15	0.4	ESE
20250701	23:30	0.4	E
20250701	23:45	0.4	SE
20230701	23.43	0.4	J JL

Data	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250702	00:00	0.4	NE
20250702	00:15	0.4	E
20250702	00:30	0.4	N
20250702	00:45	0.4	NE
20250702	01:00	0.4	NNE
20250702	01:15	0.0	ENE
20250702	01:30	0.4	SE
20250702	01:45	0.4	NE
20250702	02:00	0.4	ENE
20250702	02:15	0.9	ENE
20250702	02:30	1.3	SE
20250702	02:45	0.4	SE
20250702	03:00	0.9	SE
20250702	03:15	0.0	ESE
20250702	03:30	0.4	E
20250702	03:45	0.4	SSE
20250702	04:00	0.9	SE
20250702	04:15	0.4	SE
20250702	04:30	0.4	SSE
20250702	04:45	0.4	ESE
20250702	05:00	0.9	SE
20250702	05:15	0.9	SE
20250702	05:30	0.9	SE
20250702	05:45	1.3	SE
20250702	06:00	0.9	SE
20250702	06:15	0.9	ESE
20250702	06:30	0.9	ESE
20250702	06:45	0.4	SE
20250702	07:00	0.4	E
20250702	07:15	0.4	SE
20250702	07:30	0.4	ESE
20250702	07:45	0.9	ESE
20250702	08:00	0.9	SE
20250702	08:15	0.9	SE
20250702	08:30	0.4	NNE
20250702	08:45	0.9	SE
20250702	09:00	0.4	ENE
20250702	09:15	1.3	SE
20250702	09:30	0.4	ESE
20250702	09:45	1.3	SE
20250702	10:00	1.3	SE
20250702	10:15	2.2	SE
20250702	10:30	1.8	SE
20250702	10:45	1.8	SE
20250702	11:00	1.3	SE
20250702	11:15	0.9	SE
20250702	11:30	1.3	SE
20250702	11:45	1.8	SE
20230702	_ <u></u>	1.0	<u> </u>

Date (YYYYMMDD) (HH:MM) Speed (m/s)			Wind	
Company Comp	Date	Time		Wind Direction
20250702 12:00 0.9 N 20250702 12:15 1.8 SE 20250702 12:30 0.9 E 20250702 12:45 1.8 SE 20250702 13:00 1.8 SE 20250702 13:30 1.8 SE 20250702 13:30 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 14:45 1.3 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 15:15 1.8 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 17:15 1.8	(YYYYMMDD)	(HH:MM)	-	Willia Bil ection
20250702 12:15 1.8 SE 20250702 12:30 0.9 E 20250702 12:45 1.8 SE 20250702 13:00 1.8 SE 20250702 13:30 1.8 SE 20250702 13:30 1.8 SE 20250702 13:45 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:30 1.3 SE 20250702 15:30 1.3 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:30 0.9	20250702	12.00		N
20250702 12:30 0.9 E 20250702 12:45 1.8 SE 20250702 13:00 1.8 SE 20250702 13:30 1.8 SE 20250702 13:30 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:15 1.8 SE 20250702 14:43 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3				
20250702 12:45 1.8 SE 20250702 13:00 1.8 SE 20250702 13:15 1.8 SE 20250702 13:30 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 14:45 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3				
20250702 13:00 1.8 SE 20250702 13:15 1.8 SE 20250702 13:30 1.8 SE 20250702 14:00 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:30 1.3 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 16:45 1.3 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 18:30 1.3				
20250702 13:15 1.8 SE 20250702 13:30 1.8 SE 20250702 13:45 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 16:45 1.3 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:30 1.8				
20250702 13:30 1.8 SE 20250702 13:45 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:30 1.3 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3				
20250702 13:45 1.8 SE 20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3				
20250702 14:00 1.8 SE 20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4				
20250702 14:15 1.8 SE 20250702 14:30 1.3 SE 20250702 15:00 2.2 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:30 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:30 0				
20250702 14:30 1.3 SE 20250702 14:45 1.3 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 19:30 0.4 SE 20250702 19:45 0.4				
20250702 14:45 1.3 SE 20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 19:30 0 SE 20250702 19:30 0				
20250702 15:00 2.2 SE 20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:30 0 20250702 19:30 0 20250702 20:15 0				+
20250702 15:15 1.8 SE 20250702 15:30 1.3 SE 20250702 16:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:30 0 20250702 19:30 0 20250702 20:15 0 20250702 20:15 0				
20250702 15:30 1.3 SE 20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:15 0 20250702 20:15 0 20250702 20:45 0.4				+
20250702 15:45 1.3 SE 20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 19:00 0 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:30 0 SE 20250702 20:30 0 SE 20250702 20:45 0.4 <td< td=""><td></td><td></td><td></td><td></td></td<>				
20250702 16:00 0.9 SE 20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 21:30 0.4 <t< td=""><td></td><td></td><td></td><td></td></t<>				
20250702 16:15 0.9 SE 20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:30 1.3 SE 20250702 18:30 1.3 SE 20250702 19:00 0 SE 20250702 19:00 0 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0				
20250702 16:30 1.3 SE 20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 18:00 1.8 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:30 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 -				
20250702 16:45 1.3 SE 20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:15 0 -				
20250702 17:00 1.8 SE 20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:30 0 20250702 19:45 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 21:45 0 20250702 22:30 0 20250702 22:30 0				
20250702 17:15 1.8 SE 20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:15 0 20250702 22:15 0 <				
20250702 17:30 0.9 SE 20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 </td <td></td> <td></td> <td></td> <td>-</td>				-
20250702 17:45 1.3 SE 20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 19:00 0 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 <td></td> <td></td> <td></td> <td></td>				
20250702 18:00 1.8 SE 20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:30 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0				
20250702 18:15 1.8 SE 20250702 18:30 1.3 SE 20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 <td></td> <td></td> <td></td> <td></td>				
20250702 18:30 1.3 SE 20250702 19:00 0 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:00 0 20250702 23:30 0 20250702 23:30 0				
20250702 18:45 0.4 SE 20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 20250702 23:30 0				
20250702 19:00 0 SE 20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 20250702 23:30 0				
20250702 19:15 0 20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 20250702 23:30 0				
20250702 19:30 0 20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 20250702 23:30 0				SE
20250702 19:45 0 20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0 20250702 23:30 0			0	
20250702 20:00 0 20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0				
20250702 20:15 0 20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0		19:45		
20250702 20:30 0 SE 20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	20:00		
20250702 20:45 0.4 SE 20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0		20:15	0	
20250702 21:00 0.4 SE 20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	20:30	0	SE
20250702 21:15 0 SE 20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0		20:45	0.4	
20250702 21:30 0.4 SE 20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	21:00	0.4	SE
20250702 21:45 0 20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	21:15	0	SE
20250702 22:00 0 20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	21:30	0.4	SE
20250702 22:15 0 20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	21:45	0	
20250702 22:30 0 20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	22:00	0	
20250702 22:45 0 20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	22:15	0	
20250702 23:00 0 20250702 23:15 0 20250702 23:30 0	20250702	22:30	0	
20250702 23:15 0 20250702 23:30 0	20250702	22:45	0	
20250702 23:30 0	20250702	23:00	0	
	20250702	23:15	0	
20250702 23:45 0	20250702	23:30	0	
	20250702	23:45	0	

Doto	Time	Wind	
Date	Time (HH:MM)	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250703	00:00	0.4	SE
20250703	00:15	0.0	SE
20250703	00:30	0.0	
20250703	00:45	0.0	
20250703	01:00	0.0	
20250703	01:15	0.0	
20250703	01:30	0.0	
20250703	01:45	0.0	
20250703	02:00	0.0	
20250703	02:15	0.0	
20250703	02:30	0.0	
20250703	02:45	0.0	
20250703	03:00	0.0	
20250703	03:15	0.0	
20250703	03:30	0.0	NNE
20250703	03:45	0.4	ESE
20250703	04:00	0.4	ESE
20250703	04:15	0.4	NNW
20250703	04:30	0.4	NNW
20250703	04:45	0.4	SSE
20250703	05:00	0.0	SSE
20250703	05:15	0.4	N
20250703	05:30	0.0	N
20250703	05:45	0.4	N
20250703	06:00	0.0	
20250703	06:15	0.0	
20250703	06:30	0.0	SE
20250703	06:45	0.0	S
20250703	07:00	0.0	S
20250703	07:15	0.0	
20250703	07:30	0.0	
20250703	07:45	0.0	
20250703	08:00	0.0	
20250703	08:15	0.0	
20250703	08:30	0.4	NNW
20250703	08:45	0.9	NW
20250703	09:00	0.4	NNW
20250703	09:15	0.4	NNW
20250703	09:30	0.9	SE
20250703	09:45	0.9	WSW
20250703	10:00	0.9	WSW
20250703	10:15	0.9	NW
20250703	10:30	0.9	NNW
20250703	10:45	1.3	NNW
20250703	11:00	0.9	SE
20250703	11:15	1.3	SE
20250703	11:30	0.9	SE
20250703	11:45	1.8	SE
20230703	11.40	1.0	J. J.

Date (YYYYMMDD) Time (HH:MM) Speed (m/s) Wind Direction (m/s) 20250703 12:00 2.2 SE 20250703 12:15 1.8 SE 20250703 12:30 1.3 SE 20250703 12:45 1.3 ESE 20250703 13:00 0.9 SE 20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 13:30 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:40 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:00 2.2 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:45 1.3 SE 20250703			Wind	
	Date	Time		Wind Direction
20250703 12:00 2.2 SE 20250703 12:15 1.8 SE 20250703 12:30 1.3 SE 20250703 12:45 1.3 ESE 20250703 13:00 0.9 SE 20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:45 1.3	(YYYYMMDD)	(HH:MM)	-	Willia Bil ection
20250703 12:15 1.8 SE 20250703 12:30 1.3 SE 20250703 12:45 1.3 ESE 20250703 13:00 0.9 SE 20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 15:45 2.2 SE 20250703 15:15 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2	20250703	12.00		S.E.
20250703 12:30 1.3 SE 20250703 12:45 1.3 ESE 20250703 13:00 0.9 SE 20250703 13:30 1.3 SE 20250703 13:45 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:45 2.7 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 17:00 0.9 ESE 20250703 17:45 1.3 SE 20250703 17:45 1.8				
20250703 12:45 1.3 ESE 20250703 13:00 0.9 SE 20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:45 2.7 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 17:10 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8				
20250703 13:00 0.9 SE 20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 14:400 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:35 2.2 SE 20250703 15:45 2.2 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:30 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:15 1.3 SE 20250703 17:45 1.8				
20250703 13:15 1.8 SE 20250703 13:30 1.3 SE 20250703 14:400 1.8 SE 20250703 14:100 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:15 2.2 SE 20250703 17:15 1.3 SE 20250703 17:15 1.3 SE 20250703 17:45 1.8				
20250703 13:30 1.3 SE 20250703 13:45 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:45 1.8				
20250703 13:45 1.3 SE 20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 17:45 1.8 SE 20250703 18:30 1.8 SE 20250703 18:30 1.8				
20250703 14:00 1.8 SE 20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8				
20250703 14:15 2.2 SE 20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8				
20250703 14:30 1.8 SE 20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3				
20250703 14:45 2.7 SE 20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 17:45 1.8 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:15 1.3 SE 20250703 19:15 1.3				
20250703 15:00 2.2 SE 20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:15 0.9				+
20250703 15:15 2.2 SE 20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.8 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9				
20250703 15:30 1.8 SE 20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:15 0.9 SE 20250703 20:15 0.9				+
20250703 15:45 2.2 SE 20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:30 1.8 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9				
20250703 16:00 2.2 SE 20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:30 1.8 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:15 1.3				
20250703 16:15 2.2 SE 20250703 16:30 2.2 SE 20250703 17:00 0.9 ESE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:30 1.8 SE 20250703 21:45 1.8				
20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 18:00 1.8 SE 20250703 18:00 1.8 SE 20250703 18:30 1.8 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:30 1.3 SE 20250703 21:45 1.3				
20250703 16:45 1.3 SE 20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8				
20250703 17:00 0.9 ESE 20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9				
20250703 17:15 1.3 SE 20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:30 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9				
20250703 17:30 1.3 SE 20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:45 0.9 ESE 20250703 22:45 0.9				
20250703 17:45 1.8 SE 20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 19:00 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:45 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9				
20250703 18:00 1.8 SE 20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:45 0.9 ESE 20250703 23:00 0.9				
20250703 18:15 2.2 SE 20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9				
20250703 18:30 1.8 SE 20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4				
20250703 18:45 1.8 SE 20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4				
20250703 19:00 1.8 SE 20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE				
20250703 19:15 1.3 SE 20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE				
20250703 19:30 1.3 SE 20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE				
20250703 19:45 1.3 SE 20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE		19:15		
20250703 20:00 0.4 ESE 20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE				
20250703 20:15 0.9 SE 20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE		19:45		
20250703 20:30 0.9 SE 20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	20:00	0.4	
20250703 20:45 1.3 SE 20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	20:15	0.9	SE
20250703 21:00 1.8 SE 20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	20:30	0.9	SE
20250703 21:15 1.3 SE 20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	20:45	1.3	SE
20250703 21:30 1.3 SE 20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	21:00	1.8	SE
20250703 21:45 1.8 SE 20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	21:15	1.3	SE
20250703 22:00 1.3 SE 20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	21:30	1.3	SE
20250703 22:15 0.9 ESE 20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	21:45	1.8	
20250703 22:30 0.4 SE 20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	22:00	1.3	SE
20250703 22:45 0.9 ESE 20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	22:15	0.9	ESE
20250703 23:00 0.9 SE 20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	22:30	0.4	SE
20250703 23:15 0.9 ESE 20250703 23:30 0.4 SE	20250703	22:45	0.9	ESE
20250703 23:30 0.4 SE	20250703	23:00	0.9	SE
	20250703	23:15	0.9	ESE
20250703 23:45 0.4 SE	20250703	23:30	0.4	SE
	20250703	23:45	0.4	SE

Doto	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250704	00:00	0.9	ESE
20250704	00:15	0.4	ESE
20250704	00:30	0.4	SE
20250704	00:45	0.4	E
20250704	01:00	0.0	E
20250704	01:15	0.0	E
20250704	01:30	0.0	E
20250704	01:45	0.4	SE
20250704	02:00	0.9	SE
20250704	02:15	0.4	SE
20250704	02:30	0.0	SE
20250704	02:45	0.4	SE
20250704	03:00	0.0	SE
20250704	03:15	0.0	SE
20250704	03:30	0.0	SE
20250704	03:45	0.9	SE
20250704	04:00	0.4	SE
20250704	04:15	0.0	ENE
20250704	04:30	0.0	ENE
20250704	04:45	0.0	
20250704	05:00	0.0	
20250704	05:15	0.0	
20250704	05:30	0.0	
20250704	05:45	0.0	
20250704	06:00	0.0	
20250704	06:15	0.0	
20250704	06:30	0.0	
20250704	06:45	0.0	
20250704	07:00	0.0	
20250704	07:15	0.0	NNW
20250704	07:30	0.4	NNW
20250704	07:45	0.0	NNW
20250704	08:00	0.4	NNW
20250704	08:15	0.9	N
20250704	08:30	0.9	NNW
20250704	08:45	0.9	NNW
20250704	09:00	0.4	NNW
20250704	09:15	0.4	SE
20250704	09:30	1.3	SE
20250704	09:45	0.9	SE
20250704	10:00	0.9	SE
20250704	10:15	1.3	SE
20250704	10:30	1.3	SE
20250704	10:45	1.8	SE
20250704	11:00	2.2	SE
20250704	11:15	1.3	ESE
20250704	11:30	1.3	SE
20250704	11:45	1.3	SE
		1.5	<u> </u>

_ Wind			
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	Willa Birection
20250704	12:00	0.9	SE
20250704	12:15	0.9	N N
20250704	12:30	0.9	NNW
20250704	12:45	0.9	WNW
20250704	13:00	0.4	SE
20250704	13:15	1.3	SE
20250704	13:30	1.3	ESE
20250704	13:45	1.8	SE
20250704	14:00	2.2	SE
20250704	14:00	1.8	SE
20250704	14:13	1.3	SE
20250704			SE
20250704	14:45	1.8	SE SE
20250704	15:00	1.8	SE
	15:15	1.8	
20250704	15:30	1.8	SE
20250704	15:45	2.2	SE
20250704	16:00	1.8	SE
20250704	16:15	1.3	SE
20250704	16:30	1.8	SE
20250704	16:45	1.3	SE
20250704	17:00	1.8	SE
20250704	17:15	1.8	SE
20250704	17:30	1.3	SE
20250704	17:45	1.3	SE
20250704	18:00	1.8	SE
20250704	18:15	1.3	SE
20250704	18:30	1.8	SE
20250704	18:45	1.8	SE
20250704	19:00	1.3	SE
20250704	19:15	1.3	SE
20250704	19:30	1.8	SE
20250704	19:45	1.3	SE
20250704	20:00	1.8	SE
20250704	20:15	1.8	SE
20250704	20:30	2.7	SE
20250704	20:45	1.8	SE
20250704	21:00	2.2	SE
20250704	21:15	2.2	SE
20250704	21:30	2.2	SE
20250704	21:45	2.2	SE
20250704	22:00	2.2	SE
20250704	22:15	1.8	SE
20250704	22:30	1.8	SE
20250704	22:45	1.8	SE
20250704	23:00	0.9	WSW
20250704	23:15	0.4	NE
20250704	23:30	0.4	ESE
20250704	23:45	0.4	N

Data	Time	Wind	
Date	Time (HH:MM)	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250705	00:00	0.0	NW
20250705	00:15	0.0	NNW
20250705	00:30	0.4	E
20250705	00:45	0.0	E
20250705	01:00	0.0	E
20250705	01:15	0.0	E
20250705	01:30	0.0	E
20250705	01:45	0.0	ESE
20250705	02:00	0.0	
20250705	02:15	0.0	
20250705	02:30	0.4	ESE
20250705	02:45	0.9	ESE
20250705	03:00	0.4	ESE
20250705	03:15	0.4	ESE
20250705	03:30	0.0	
20250705	03:45	0.0	
20250705	04:00	0.0	
20250705	04:15	0.0	
20250705	04:30	0.0	
20250705	04:45	0.0	
20250705	05:00	0.0	
20250705	05:15	0.0	
20250705	05:30	0.0	
20250705	05:45	0.4	NNE
20250705	06:00	0.0	NNE
20250705	06:15	0.0	NNE
20250705	06:30	0.4	NNE
20250705	06:45	0.4	NNE
20250705	07:00	0.0	NNE
20250705	07:15	0.0	NNE
20250705	07:30	0.0	
20250705	07:45	0.0	
20250705	08:00	0.0	
20250705	08:15	0.0	
20250705	08:30	0.4	NNE
20250705	08:45	1.3	NW
20250705	09:00	1.8	NNW
20250705	09:15	1.3	NNW
20250705	09:30	1.3	NNW
20250705	09:45	1.3	NNW
20250705	10:00	1.3	NNW
20250705	10:15	1.8	NNW
20250705	10:30	2.2	NW
20250705	10:45	1.8	NW
20250705	11:00	1.8	NNW
20250705	11:15	1.8	NNW
20250705	11:30	1.8	NW
20250705	11:45	1.8	NNW

Date	Time	Wind	
(YYYYMMDD)		Speed	Wind Direction
(11111111111111111111111111111111111111		(m/s)	
20250705	12:00	0.9	ENE
20250705	12:15	1.3	NW
20250705	12:30	0.9	NNW
20250705	12:45	1.3	NNW
20250705	13:00	0.9	NNE
20250705	13:15	0.4	SE
20250705	13:30	1.3	SE
20250705	13:45	0.9	NNE
20250705	14:00	1.3	SE
20250705	14:15	1.3	N
20250705	14:30	1.3	SE
20250705	14:45	1.8	SE
20250705	15:00	1.3	SE
20250705	15:15	0.9	SE
20250705	15:30	0.9	WNW
20250705	15:45	0.9	NNW
20250705	16:00	1.8	SE
20250705	16:15	2.7	SE
20250705	16:30	4.0	SE
20250705	16:45	4.5	SE
20250705	17:00	3.6	SE
20250705	17:15	2.7	SE
20250705	17:30	2.7	SE
20250705	17:45	2.2	SE
20250705	18:00	2.7	SE
20250705	18:15	3.1	SE
20250705	18:30	2.2	SE
20250705	18:45	2.2	SE
20250705	19:00	2.2	SE
20250705	19:15	2.2	SE
20250705	19:30	2.7	SE
20250705	19:45	1.8	SE
20250705	20:00	2.2	SE
20250705	20:15	2.7	SE
20250705	20:30	1.3	SE
20250705	20:45	0.4	ENE
20250705	21:00	0.4	SE
20250705	21:15	0.4	E
20250705	21:30	0.4	ENE
20250705	21:45	0.9	ESE
20250705	22:00	1.3	SE
20250705	22:15	0.9	SE
20250705	22:30	0.9	ESE
20250705	22:45	0.5	NNW
20250705	23:00	0	NNW
20250705	23:15	0	ENE
20250705	23:30	0	ENE
20250705	23:45	0	ENE
20230703	23.43	<u> </u>	LINL

Data	Time	Wind	
Date (YYYYMMDD)	l	Speed	Wind Direction
(TTTTIVIIVID)	(nn:iviivi)	(m/s)	
20250706	00:00	0.4	ENE
20250706	00:15	0.4	ENE
20250706	00:30	0.0	ENE
20250706	00:45	0.0	
20250706	01:00	0.0	
20250706	01:15	0.0	
20250706	01:30	0.0	
20250706	01:45	0.0	
20250706	02:00	0.0	ENE
20250706	02:15	0.0	ENE
20250706	02:30	0.0	ENE
20250706	02:45	0.0	ENE
20250706	03:00	0.0	ENE
20250706	03:15	0.0	
20250706	03:30	0.0	
20250706	03:45	0.0	
20250706	04:00	0.0	
20250706	04:15	0.4	E
20250706	04:30	0.9	E
20250706	04:45	0.4	E
20250706	05:00	0.0	E
20250706	05:15	0.0	
20250706	05:30	0.0	
20250706	05:45	0.0	
20250706	06:00	0.0	
20250706	06:15	0.4	SSE
20250706	06:30	0.0	SSE
20250706	06:45	0.4	SSE
20250706	07:00	0.4	SSE
20250706	07:15	0.0	SSE
20250706	07:30	0.9	N
20250706	07:45	0.9	NNW
20250706	08:00	1.3	NNW
20250706	08:15	1.8	NNW
20250706	08:30	1.3	NNW
20250706	08:45	1.3	NNW
20250706	09:00	1.8	NW
20250706	09:15	1.8	NNW
20250706	09:30	2.2	NNW
20250706	09:45	1.8	NNW
20250706	10:00	1.8	N
20250706	10:15	1.8	NNW
20250706	10:30	0.9	NNW
20250706	10:45	1.3	NNW
20250706	11:00	1.3	NNW
20250706	11:15	0.9	NNW
20250706	11:30	1.8	N
20250706	11:45	2.2	NNW

Wind			
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	Tring Birection
20250706	12:00	2.2	NNW
20250706	12:15	1.8	NW
20250706	12:30	1.8	NNW
20250706	12:45	0.9	NNW
20250706	13:00	1.3	NNW
20250706	13:15	1.3	NW
20250706	13:30	1.3	N
20250706	13:45	1.8	N
20250706	14:00	1.3	N
20250706	14:15	1.3	N
20250706	14:13	1.3	N
20250706	14:45	1.3	NNW
20250706	15:00	1.3	NNW
20250706	15:15	1.3	N
20250706	15:30	0.9	NNW
20250706	15:45	0.4	N
20250706	16:00	0.9	WSW
20250706	16:15	0.9	WSW
20250706	16:30	0.9	WSW
20250706	16:45	0.9	ESE
20250706	17:00	1.8	WSW
20250706	17:15	1.3	WSW
20250706	17:30	1.3	WSW
20250706	17:45	1.8	WSW
20250706	18:00	1.3	NNE
20250706	18:15	1.3	NNW
20250706	18:30	1.3	WSW
20250706	18:45	0.9	NE
20250706	19:00	1.3	WSW
20250706	19:15	1.3	WSW
20250706	19:30	0.4	SSW
20250706	19:45	0.4	SSE
20250706	20:00	0.4	SW
20250706	20:15	0.4	SSW
20250706	20:30	0.9	SSW
20250706	20:45	0.9	SSE
20250706	21:00	0.9	SSE
20250706	21:15	0.4	WSW
20250706	21:30	0.9	E
20250706	21:45	0.4	WSW
20250706	22:00	0.4	SSW
20250706	22:15	0.4	E
20250706	22:30	0.4	NNW
20250706	22:45	0.4	E
20250706	23:00	0.4	WSW
20250706	23:15	0.4	SSE
20250706	23:30	0.4	SE
20250706	23:45	0	SE
			·

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250707	00:00	0.0	SE
20250707	00:15	0.0	
20250707	00:30	0.4	SE
20250707	00:45	0.0	SE
20250707	01:00	0.0	SE
20250707	01:15	0.0	
20250707	01:30	0.0	
20250707	01:45	0.0	
20250707	02:00	0.0	
20250707	02:15	0.0	
20250707	02:30	0.0	
20250707	02:45	0.0	
20250707	03:00	0.0	
20250707	03:15	0.0	
20250707	03:30	0.0	
20250707	03:45	0.0	
20250707	04:00	0.0	
20250707	04:15	0.0	NNE
20250707	04:30	0.4	NE NE
20250707	04:45	0.4	E
20250707	05:00	0.4	SW
20250707	05:15	0.0	SSW
20250707	05:30	0.0	SSW
20250707	05:45	0.4	SE
20250707	06:00	0.4	SE
20250707	06:15	0.4	SE
20250707	06:30	0.4	SE
20250707	06:45	0.4	SE
20250707	07:00	0.4	SE
20250707	07:00		SE
		0.4	SW
20250707 20250707	07:30 07:45	0.9	WSW
		0.9	+
20250707	08:00	0.9	WSW WSW
20250707	08:15		
20250707	08:30	1.8	WSW
20250707	08:45	1.8	WSW
20250707	09:00	1.8	WSW
20250707	09:15	1.3	WSW
20250707	09:30	1.8	WSW
20250707	09:45	1.8	WSW
20250707	10:00	1.8	WSW
20250707	10:15	2.2	WSW
20250707	10:30	1.8	WSW
20250707	10:45	1.8	WSW
20250707	11:00	1.3	WSW
20250707	11:15	1.8	WSW
20250707	11:30	1.8	WSW
20250707	11:45	1.3	WSW

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250707	12:00	1.8	WSW
20250707	12:15	1.3	WSW
20250707	12:30	2.2	N
20250707	12:45	1.3	NNW
20250707	13:00	1.3	WSW
20250707	13:15	1.8	WSW
20250707	13:30	2.2	N
20250707	13:45	1.8	WSW
20250707	14:00	1.8	WSW
20250707	14:15	1.8	WSW
20250707	14:30	0.9	WSW
20250707	14:45	1.8	WSW
20250707	15:00	1.8	WSW
20250707	15:15	1.3	N
20250707	15:30	1.3	WSW
20250707	15:45	1.8	WSW
20250707	16:00	2.2	WSW
20250707	16:15	1.3	WSW
20250707	16:30	1.8	WSW
20250707	16:45	1.8	WSW
20250707	17:00	1.8	WSW
20250707	17:15	1.8	WSW
20250707	17:30	0.9	WSW
20250707	17:45	1.3	WSW
20250707	18:00	1.8	WSW
20250707	18:15	0.9	N
20250707	18:30	1.3	WSW
20250707	18:45	0.9	WSW
20250707	19:00	0.9	WSW
20250707	19:15	0.9	WSW
20250707	19:30	0	W
20250707	19:45	0.4	SSW
20250707	20:00	0.4	SSW
20250707	20:15	0.4	SSW
20250707	20:30	0.4	SSW
20250707	20:45	0.4	E
20250707	21:00	0.4	E
20250707	21:15	1.3	WSW
20250707	21:30	0.9	WSW
20250707	21:45	0.9	SE
20250707	22:00	0.4	SSW
20250707	22:15	0.4	SSE
20250707	22:30	0.4	SSE
20250707	22:45	0.4	SE
20250707	23:00	0.4	W
20250707	23:15	0.4	SE
20250707	23:30	0	ENE
20250707	23:45	0.4	ENE

Doto	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250708	00:00	0.4	ENE
20250708	00:15	0.4	ENE
20250708	00:30	0.4	SE
20250708	00:45	0.4	SE
20250708	01:00	0.4	SSE
20250708	01:15	0.4	SSE
20250708	01:30	0.4	SSE
20250708	01:45	0.0	SSE
20250708	02:00	0.4	SSE
20250708	02:15	0.4	SSE
20250708	02:30	0.4	SSE
20250708	02:45	0.4	SSE
20250708	03:00	0.0	SSE
20250708	03:15	0.4	SSE
20250708	03:30	0.0	SSE
20250708	03:45	0.4	SSE
20250708	04:00	0.4	SSE
20250708	04:15	0.0	
20250708	04:30	0.0	
20250708	04:45	0.0	
20250708	05:00	0.0	
20250708	05:15	0.0	
20250708	05:30	0.0	
20250708	05:45	0.0	E
20250708	06:00	0.0	
20250708	06:15	0.0	E
20250708	06:30	0.4	E
20250708	06:45	0.4	E
20250708	07:00	0.0	SE
20250708	07:15	0.9	SE
20250708	07:30	0.4	SE
20250708	07:45	0.0	SE
20250708	08:00	0.4	WSW
20250708	08:15	1.3	WSW
20250708	08:30	0.9	WSW
20250708	08:45	0.9	WSW
20250708	09:00	0.9	WSW
20250708	09:15	2.2	WSW
20250708	09:30	1.3	WSW
20250708	09:45	1.8	N
20250708	10:00	1.8	WSW
20250708	10:15	2.2	WSW
20250708	10:30	1.8	WSW
20250708	10:45	1.3	SE
20250708	11:00	2.2	WSW
20250708	11:15	2.2	WSW
20250708	11:30	1.8	WSW
20250708	11:45	2.2	WSW

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250708	12:00	2.7	SE
20250708	12:15	1.8	SE
20250708	12:30	2.2	SE
20250708	12:45	2.7	SE
20250708	13:00	2.2	SE
20250708	13:15	2.2	SE
20250708	13:30	1.8	SE
20250708	13:45	1.8	SE
20250708	14:00	1.8	SSE
20250708	14:15	1.8	SE
20250708	14:30	1.3	SE
20250708	14:45	1.3	SE
20250708	15:00	1.3	SE
20250708	15:15	1.8	WSW
20250708	15:30	1.3	WSW
20250708	15:45	0.9	WSW
20250708	16:00	1.8	WSW
20250708	16:15	1.3	WSW
20250708	16:30	2.2	N
20250708	16:45	1.8	WSW
20250708	17:00	1.3	WSW
20250708	17:15	0.9	WSW
20250708	17:30	0.9	WSW
20250708	17:45	0.9	WSW
20250708	18:00	0.9	NE
20250708	18:15	0.9	N
20250708	18:30	0.4	NNW
20250708	18:45	0.4	W
20250708	19:00	0.9	WSW
20250708	19:15	0.4	SSE
20250708	19:30	0.4	SSW
20250708	19:45	0.4	W
20250708	20:00	0.4	SSW
20250708	20:15	0	SSW
20250708	20:30	0	
20250708	20:45	0	
20250708	21:00	0.4	SSE
20250708	21:15	0.4	SSE
20250708	21:30	0	SSE
20250708	21:45	0	SSE
20250708	22:00	0	
20250708	22:15	0.4	SSE
20250708	22:30	0	SSE
20250708	22:45	0	SSE
20250708	23:00	0	SSE
20250708	23:15	0	SSE
20250708	23:30	0.9	SSE
20250708	23:45	0.9	SSE

Date (YYYYMMDD) (20250709 20250709 20250709 20250709 20250709	Time HH:MM) 00:00 00:15 00:30 00:45	Speed (m/s) 0.9 0.4 0.4	Wind Direction SE SE
20250709 20250709 20250709 20250709	00:00 00:15 00:30	0.9 0.4	
20250709 20250709 20250709	00:15 00:30	0.4	
20250709 20250709	00:30		CE
20250709		0.4	J⊑
	00:45	υ. r	ESE
20250709		0.9	E
	01:00	0.4	SE
20250709	01:15	0.9	SE
20250709	01:30	0.4	SE
20250709	01:45	0.4	SE
20250709	02:00	0.0	
20250709	02:15	0.4	SE
20250709	02:30	0.4	SE
20250709	02:45	0.4	SE
20250709	03:00	0.4	SE
20250709	03:15	0.0	
20250709	03:30	0.4	SE
20250709	03:45	0.0	SE
20250709	04:00	0.4	SE
20250709	04:15	0.4	SE
20250709	04:30	0.4	SE
20250709	04:45	0.0	
20250709	05:00	0.0	SE
20250709	05:15	0.0	SE
20250709	05:30	0.0	
20250709	05:45	0.0	
20250709	06:00	0.4	SSE
20250709	06:15	0.4	SSE
20250709	06:30	0.9	SSE
20250709	06:45	0.9	SSE
20250709	07:00	0.4	SSE
20250709	07:15	0.0	SSE
20250709	07:30	0.9	SSE
20250709	07:45	1.3	SE
20250709	08:00	0.4	WSW
20250709	08:15	0.9	WSW
20250709	08:30	1.3	WSW
20250709	08:45	1.8	WSW
20250709	09:00	1.3	WSW
20250709	09:15	1.8	WSW
20250709	09:30	0.4	N
20250709	09:45	0.4	E
20250709	10:00	0.4	E
20250709	10:15	0.0	NNE
20250709	10:30	0.0	NW
20250709	10:45	0.4	NE
20250709	11:00	0.4	E
20250709	11:15	0.9	WSW
20250709	11:30	0.9	WSW
20250709	11:45	0.9	N

		Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	Tring Birection
20250709	12:00	0.9	WSW
20250709	12:15	1.3	WSW
20250709	12:30	1.3	WSW
20250709	12:45	1.8	WSW
20250709	13:00	1.8	NNW
20250709	13:15	1.3	WSW
20250709	13:30	1.8	NNW
20250709	13:45	1.8	WSW
20250709	14:00	1.3	WSW
20250709	14:15	2.2	WSW
20250709	14:13	2.2	WSW
20250709	14:45	2.2	WSW
20250709	15:00		WSW
		1.8	+
20250709	15:15		WSW
20250709	15:30	1.8	WSW
20250709	15:45	1.8	WSW
20250709	16:00	2.2	WSW
20250709	16:15	1.8	WSW
20250709	16:30	1.8	WSW
20250709	16:45	1.3	WSW
20250709	17:00	0.9	N
20250709	17:15	0.9	WSW
20250709	17:30	1.3	WSW
20250709	17:45	0.9	WSW
20250709	18:00	1.3	WSW
20250709	18:15	0.9	WSW
20250709	18:30	0.9	WSW
20250709	18:45	0.9	SSE
20250709	19:00	0.9	SE
20250709	19:15	0.4	SE
20250709	19:30	0.4	SE
20250709	19:45	0.9	SE
20250709	20:00	0.4	SE
20250709	20:15	0.9	SE
20250709	20:30	0.9	SSE
20250709	20:45	0.9	SE
20250709	21:00	0.9	ESE
20250709	21:15	0.9	E
20250709	21:30	0.9	SE
20250709	21:45	0.4	SE
20250709	22:00	0.4	NNE
20250709	22:15	1.3	WSW
20250709	22:30	2.7	NNW
20250709	22:45	2.2	NW
20250709	23:00	3.1	NNW
20250709	23:15	3.1	N
20250709	23:30	1.3	SE
20250709	23:45	0.9	SE
			•

Date	Time	Wind	
	1	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250710	00:00	0.4	SE
20250710	00:15	0.4	SE
20250710	00:30	0.4	SSW
20250710	00:45	0.0	SE
20250710	01:00	0.4	SE
20250710	01:15	0.4	SSE
20250710	01:30	0.0	SSE
20250710	01:45	0.4	SSE
20250710	02:00	0.0	SSE
20250710	02:15	0.4	SSE
20250710	02:30	0.0	SSE
20250710	02:45	0.0	SSE
20250710	03:00	0.4	SSE
20250710	03:15	0.0	SSE
20250710	03:30	0.0	SSE
20250710	03:45	0.4	SSE
20250710	04:00	0.9	SSE
20250710	04:15	0.4	SE
20250710	04:30	0.4	SE
20250710	04:45	0.4	SE
20250710	05:00	0.4	SE
20250710	05:15	0.4	SE
20250710	05:30	0.4	SE
20250710	05:45	0.4	SE
20250710	06:00	0.0	SE
20250710	06:15	0.0	SE
20250710	06:30	0.0	SE
20250710	06:45	0.0	JL
20250710	07:00	0.0	
-	07:00		SE
20250710		0.4	
20250710	07:30 07:45	0.4	SE SE
20250710		0.0	+
20250710	08:00 08:15	0.0	SE SE
20250710		0.0	+
20250710	08:30	0.9	NNE
20250710	08:45	1.3	SE
20250710	09:00	1.3	SE
20250710	09:15	0.9	ESE
20250710	09:30	0.4	SE
20250710	09:45	0.9	SE
20250710	10:00	0.0	SE
20250710	10:15	0.4	SE
20250710	10:30	0.4	SE
20250710	10:45	1.3	SE
20250710	11:00	0.9	SE
20250710	11:15	0.4	SE
20250710	11:30	0.4	ESE
20250710	11:45	0.4	NE

		Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	-	Willia Direction
20250710	12:00	(m/s) 0.4	NE
			SE
20250710	12:15	0.9	
20250710	12:30	0.0	SSW
20250710	12:45	0.4	SE
20250710	13:00	0.4	SE
20250710	13:15	1.3	SE
20250710	13:30	1.3	SE
20250710	13:45	1.3	SE
20250710	14:00	0.9	SE
20250710	14:15	0.9	SE
20250710	14:30	2.7	SE
20250710	14:45	0.9	W
20250710	15:00	0.4	N
20250710	15:15	0.4	NE
20250710	15:30	0.0	ENE
20250710	15:45	0.0	ENE
20250710	16:00	0.0	ENE
20250710	16:15	0.0	
20250710	16:30	0.0	ENE
20250710	16:45	0.9	E
20250710	17:00	0.0	E
20250710	17:15	0.0	E
20250710	17:30	0.0	E
20250710	17:45	0.0	Е
20250710	18:00	0.4	Е
20250710	18:15	0.4	ESE
20250710	18:30	0.4	ESE
20250710	18:45	0.9	ESE
20250710	19:00	1.3	NW
20250710	19:15	0.9	NW
20250710	19:30	0	NW
20250710	19:45	0.4	ESE
20250710	20:00	0.4	S
20250710	20:15	0	S
20250710	20:30	0.9	S
20250710	20:45	0.4	S
20250710	21:00	0	S
20250710	21:15	0.4	S
20250710	21:30	0.4	S
20250710	21:45	0.4	S
20250710	22:00	0.4	S
20250710	22:15	0	\$ \$
20250710	22:30	0	S
20250710	22:30	0.4	S S
			SSE
20250710	23:00	0.9	
20250710	23:15	0.9	SSE
20250710	23:30	0.4	SSE
20250710	23:45	0	

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(ווואו:חח)	(m/s)	
20250711	00:00	0.4	N
20250711	00:15	0.4	SE
20250711	00:30	0.4	SE
20250711	00:45	0.4	SE
20250711	01:00	0.0	SE
20250711	01:15	0.0	SE
20250711	01:30	0.0	SE
20250711	01:45	0.9	SE
20250711	02:00	0.0	SE
20250711	02:15	0.0	
20250711	02:30	0.0	
20250711	02:45	0.9	SE
20250711	03:00	0.9	SE
20250711	03:15	1.3	SE
20250711	03:30	0.9	SE
20250711	03:45	0.9	SE
20250711	04:00	0.0	SE
20250711	04:15	0.4	SE
20250711	04:30	0.4	SE
20250711	04:45	0.9	SSE
20250711	05:00	0.9	SSE
20250711	05:15	1.3	SSE
20250711	05:30	1.8	SE
20250711	05:45	0.9	SE
20250711	06:00	0.9	SE
20250711	06:15	0.9	SE
20250711	06:30	0.9	SE
20250711	06:45	0.0	SE
20250711	07:00	0.0	SE
20250711	07:15	0.4	SE
20250711	07:30	0.0	SE
20250711	07:45	0.4	SE
20250711	08:00	0.9	SE
20250711	08:15	0.4	SSE
20250711	08:30	0.0	SSE
20250711	08:45	0.4	SSE
20250711	09:00	0.4	SSE
20250711	09:15	0.0	SSE
20250711	09:30	0.4	SSE
20250711	09:45	0.0	S
20250711	10:00	0.4	S
20250711	10:15	0.4	ENE
20250711	10:30	0.4	ENE
20250711	10:45	0.4	ENE
20250711	11:00	0.0	ENE
20250711	11:15	0.4	ENE
20250711	11:30	0.4	ENE
20250711	11:45	0.4	WSW
			1

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250711	12:00	0.4	WSW
20250711	12:15	0.4	SE
20250711	12:30	1.3	WSW
20250711	12:45	1.3	WSW
20250711	13:00	1.3	WSW
20250711	13:15	0.9	SSE
20250711	13:30	0.4	SE
20250711	13:45	0.0	SSE
20250711	14:00	0.4	SSE
20250711	14:15	0.4	WSW
20250711	14:30	0.4	SE
20250711	14:45	0.4	SE
20250711	15:00	0.9	SE
20250711	15:15	0.9	SE
20250711	15:30	0.4	ESE
20250711	15:45	0.4	N
20250711	16:00	0.4	WSW
20250711	16:15	0.9	WSW
20250711	16:30	0.4	WSW
20250711	16:45	0.9	SSE
20250711	17:00	0.9	WSW
20250711	17:15	0.9	WSW
20250711	17:30	0.4	SE
20250711	17:45	0.0	SW
20250711	18:00	0	SW
20250711	18:15	0	S
20250711	18:30	0.4	S
20250711	18:45	0.4	S
20250711	19:00	0.4	S
20250711	19:15	0.4	S
20250711	19:30	0	S
20250711	19:45	0	
20250711	20:00	0	
20250711	20:15	0	
20250711	20:30	0	
20250711	20:45	0	
20250711	21:00	0	
20250711	21:15	0	
20250711	21:30	0	
20250711	21:45	0	
20250711	22:00	0	
20250711	22:15	0	
20250711	22:30	0	
20250711	22:45	0	
20250711	23:00	0	
20250711	23:15	0	
20250711	23:30	0	
20250711	23:45	0	

Data	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250712	00:00	0.0	
20250712	00:15	0.0	
20250712	00:30	0.0	
20250712	00:45	0.0	
20250712	01:00	0.0	
20250712	01:15	0.0	
20250712	01:30	0.0	
20250712	01:45	0.0	
20250712	02:00	0.0	
20250712	02:15	0.0	
20250712	02:30	0.0	
20250712	02:45	0.0	
20250712	03:00	0.0	
20250712	03:15	0.0	
20250712	03:30	0.0	
20250712	03:45	0.4	S
20250712	04:00	0.4	SSW
20250712	04:15	0.4	SSW
20250712	04:30	0.9	SE
20250712	04:45	0.0	SE
20250712	05:00	0.0	E
20250712	05:15	0.9	SSE
20250712	05:30	0.4	SSE
20250712	05:45	0.4	ESE
20250712	06:00	0.0	ESE
20250712	06:15	0.0	ESE
20250712	06:30	0.0	ESE
20250712	06:45	0.4	ESE
20250712	07:00	0.0	ESE
20250712	07:15	0.4	NNE
20250712	07:30	0.4	NNE
20250712	07:45	0.0	NNE
20250712	08:00	0.0	NNE
20250712	08:15	0.0	NNE
20250712	08:30	0.0	NNE
20250712	08:45	0.4	E
20250712	09:00	0.0	SSE
20250712	09:15	0.9	WSW
20250712	09:30	2.2	SE
20250712	09:45	0.9	ESE
20250712	10:00	0.4	SE
20250712	10:00	0.4	NE NE
20250712	10:13	0.4	NNE
20250712	10:30	0.4	W
20250712	11:00	0.4	WNW
		0.4	NW
20250712 20250712	11:15	0.9	
20250712	11:30 11:45	0.4	NNE NNE
20230/12	11.43	0.4	ININE

		Wind	
Date	Time		Wind Direction
(YYYYMMDD)	(HH:MM)	Speed	Willa Direction
20250712	12:00	(m/s) 0.9	SE
20250712	12:15	1.3	SE
20250712	12:30	1.8	SE
20250712		1.3	SE SE
20250712	12:45 13:00	1.3	SE
		1.3	SE
20250712	13:15		+
20250712	13:30	1.3	SE
20250712	13:45	1.3 0.4	SE SE
20250712	14:00		+
20250712	14:15	0.4	SE
20250712	14:30	0.9	SE
20250712	14:45	1.3	SE
20250712	15:00	1.3	SE
20250712	15:15	0.9	SE
20250712	15:30	0.9	SE
20250712	15:45	0.9	SE
20250712	16:00	0.4	SE
20250712	16:15	0.9	SE
20250712	16:30	0.9	SE
20250712	16:45	0.9	SE
20250712	17:00	0.0	SE
20250712	17:15	0.0	NE
20250712	17:30	0.4	NNW
20250712	17:45	0.0	
20250712	18:00	0	ENE
20250712	18:15	0	
20250712	18:30	0	
20250712	18:45	0	ENE
20250712	19:00	0.4	WSW
20250712	19:15	0.4	SE
20250712	19:30	0	SE
20250712	19:45	0	SE
20250712	20:00	0	
20250712	20:15	0	
20250712	20:30	0	
20250712	20:45	0	
20250712	21:00	0.4	SE
20250712	21:15	0	
20250712	21:30	0	SE
20250712	21:45	0	
20250712	22:00	0.4	SE
20250712	22:15	0	SE
20250712	22:30	0	
20250712	22:45	0	
20250712	23:00	0	
20250712	23:15	0	
20250712	23:30	0	
20250712	23:45	0	

Data	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250713	00:00	0.0	
20250713	00:15	0.0	
20250713	00:30	0.0	
20250713	00:45	0.4	S
20250713	01:00	0.0	S
20250713	01:15	0.0	S
20250713	01:30	0.0	S
20250713	01:45	0.0	
20250713	02:00	0.0	S
20250713	02:15	0.0	S
20250713	02:30	0.0	S
20250713	02:45	0.0	
20250713	03:00	0.0	
20250713	03:15	0.0	S
20250713	03:30	0.0	S
20250713	03:45	0.0	S
20250713	04:00	0.0	
20250713	04:15	0.0	
20250713	04:30	0.0	
20250713	04:45	0.0	
20250713	05:00	0.0	
20250713	05:15	0.0	
20250713	05:30	0.0	
20250713	05:45	0.0	
20250713	06:00	0.0	
20250713	06:15	0.0	
20250713	06:30	0.0	
20250713	06:45	0.0	
20250713	07:00	0.0	S
20250713	07:15	0.4	S
20250713	07:30	0.9	SSW
20250713	07:45	0.4	SSW
20250713	08:00	0.0	SSW
20250713	08:15	0.4	SE
20250713	08:30	0.4	SE
20250713	08:45	0.0	SE
20250713	09:00	0.0	ESE
20250713	09:15	0.4	SE
20250713	09:30	0.4	SE
20250713	09:45	0.9	SE
20250713	10:00	0.4	SE
20250713	10:15	0.4	NNW
20250713	10:30	0.9	ESE
20250713	10:45	0.4	SE
20250713	11:00	0.4	SE
20250713	11:15	0.9	SE
20250713	11:30	1.3	SE
20250713	11:45	1.3	SE
			, ,-

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250713	12:00	0.9	SE
20250713	12:15	1.8	SE
20250713	12:30	1.3	SE
20250713	12:45	0.9	SE
20250713	13:00	0.9	SE
20250713	13:15	1.3	SE
20250713	13:30	1.8	SE
20250713	13:45	1.3	SE
20250713	14:00	1.3	SE
20250713	14:15	1.8	WSW
20250713	14:30	1.3	WSW
20250713	14:45	1.3	SE
20250713	15:00	1.3	ESE
20250713	15:15	0.9	WSW
20250713	15:30	1.3	WSW
20250713	15:45	1.8	WSW
20250713	16:00	1.8	WSW
20250713	16:15	1.8	WSW
20250713	16:30	1.8	WSW
20250713	16:45	1.8	WSW
20250713	17:00	0.9	WSW
20250713	17:15	1.3	WSW
20250713	17:30	1.3	WSW
20250713	17:45	1.8	WSW
20250713	18:00	1.3	WSW
20250713	18:15	1.8	WSW
20250713	18:30	0.9	WSW
20250713	18:45	0.9	WSW
20250713	19:00	0.4	WNW
20250713	19:15	0.4	WSW
20250713	19:30	0.4	SW
20250713	19:45	0	SW
20250713	20:00	0	SW
20250713	20:15	0	
20250713	20:30	0	
20250713	20:45	0	SW
20250713	21:00	0	SW
20250713	21:15	0	SW
20250713	21:30	0.4	SE
20250713	21:45	0	SW
20250713	22:00	0	WSW
20250713	22:15	0	
20250713	22:30	0	WSW
20250713	22:45	0	
20250713	23:00	0	WSW
20250713	23:15	0	WSW
20250713	23:30	0	NW
20250713	23:45	0	NE

Doto	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250714	00:00	0.0	NE
20250714	00:15	0.0	NE
20250714	00:30	0.0	
20250714	00:45	0.0	
20250714	01:00	0.0	
20250714	01:15	0.0	
20250714	01:30	0.0	
20250714	01:45	0.0	
20250714	02:00	0.4	SE
20250714	02:15	0.0	
20250714	02:30	0.0	
20250714	02:45	0.0	
20250714	03:00	0.0	SE
20250714	03:15	0.4	SE
20250714	03:30	0.0	SE
20250714	03:45	0.0	
20250714	04:00	0.0	
20250714	04:15	0.4	SE
20250714	04:30	0.0	
20250714	04:45	0.0	
20250714	05:00	0.0	SE
20250714	05:15	0.0	
20250714	05:30	0.0	
20250714	05:45	0.0	SE
20250714	06:00	0.0	SE
20250714	06:15	0.0	
20250714	06:30	0.0	
20250714	06:45	0.0	SE
20250714	07:00	0.4	ESE
20250714	07:15	0.4	NE NE
20250714	07:30	0.0	
20250714	07:45	0.0	
20250714	08:00	0.0	E
20250714	08:15	0.4	SE
20250714	08:30	0.4	ESE
20250714	08:45	0.4	SE
20250714	09:00	0.9	SE
20250714	09:15	0.9	WSW
20250714	09:30	0.9	WSW
20250714	09:45	0.9	WSW
20250714	10:00	1.3	SE
20250714	10:00	0.9	NW
20250714	10:30	0.9	WSW
20250714	10:35	1.3	WSW
20250714	11:00	0.9	N
20250714	11:15	0.9	N
20250714	11:30	1.3	NNW
20250714	11:45	0.9	WSW
20250717	±±.7 <i>3</i>	0.5	, vv 3 vv

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250714	12:00	1.3	WSW
20250714	12:15	1.3	WSW
20250714	12:30	1.8	NNW
20250714	12:45	1.8	NNW
20250714	13:00	1.8	NNW
20250714	13:15	1.3	NNW
20250714	13:30	1.3	N
20250714	13:45	1.3	WSW
20250714	14:00	1.8	WSW
20250714	14:15	1.8	N
20250714	14:30	1.8	N
20250714	14:45	1.8	WSW
20250714	15:00	2.2	WSW
20250714	15:15	1.3	WSW
20250714	15:30	0.9	WSW
20250714	15:45	1.3	WSW
20250714	16:00	1.8	WSW
20250714	16:15	1.3	WSW
20250714	16:30	1.8	N
20250714	16:45	0.9	WSW
20250714	17:00	1.3	WSW
20250714	17:15	0.9	WSW
20250714	17:30	1.3	WSW
20250714	17:45	0.9	WSW
20250714	18:00	0.9	WSW
20250714	18:15	0.4	WSW
20250714	18:30	0.9	WSW
20250714	18:45	1.3	SE
20250714	19:00	1.3	SE
20250714	19:15	1.8	SE
20250714	19:30	1.8	SE
20250714	19:45	1.8	SE
20250714	20:00	1.3	SE
20250714	20:15	0	SW
20250714	20:30	0	SW
20250714	20:45	0	SW
20250714	21:00	0	SW
20250714	21:15	0	
20250714	21:30	0	
20250714	21:45	0	
20250714	22:00	0	
20250714	22:15	0	
20250714	22:30	0	
20250714	22:45	0	
20250714	23:00	0	
20250714	23:15	0	
20250714	23:30	0	
20250714	23:45	0	

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250715	00:00	0.4	SSW
20250715	00:15	0.4	NNW
20250715	00:30	0.0	NNW
20250715	00:45	0.0	NNW
20250715	01:00	0.4	NE
20250715	01:15	0.0	
20250715	01:30	0.0	S
20250715	01:45	0.4	S
20250715	02:00	0.0	S
20250715	02:15	0.0	S
20250715	02:30	0.0	
20250715	02:45	0.0	
20250715	03:00	0.0	
20250715	03:15	0.4	S
20250715	03:30	0.0	S
20250715	03:45	0.0	
20250715	04:00	0.0	S
20250715	04:15	0.4	S
20250715	04:30	0.4	SSE
20250715	04:45	0.4	SE
20250715	05:00	0.0	
20250715	05:15	0.0	
20250715	05:30	0.0	
20250715	05:45	0.0	
20250715	06:00	0.0	
20250715	06:15	0.0	
20250715	06:30	0.0	
20250715	06:45	0.0	
20250715	07:00	0.0	
20250715	07:15	0.0	NNE
20250715	07:30	0.9	NNE
20250715	07:45	0.9	WSW
20250715	08:00	0.4	WSW
20250715	08:15	1.3	WSW
20250715	08:30	1.8	WSW
20250715	08:45	1.3	WSW
20250715	09:00	1.3	WSW
20250715	09:15	1.8	WSW
20250715	09:30	1.3	NNW
20250715	09:45	1.3	WSW
20250715	10:00	1.3	WSW
20250715	10:15	1.8	WSW
20250715	10:30	1.3	N
20250715	10:45	1.3	WSW
20250715	11:00	1.3	WSW
20250715	11:15	1.3	WSW
20250715	11:30	1.3	WSW
20250715	11:45	1.8	WSW
			1

		Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250715	12:00	1.8	WSW
20250715	12:15	1.3	WSW
20250715	12:30	1.8	WSW
20250715	12:45	1.8	WSW
20250715	13:00	1.3	WSW
20250715	13:15	1.3	WSW
20250715	13:30	1.3	WSW
20250715	13:45	0.9	WSW
20250715	14:00	1.3	WSW
20250715	14:15	1.3	WSW
20250715	14:30	1.8	WSW
20250715	14:45	1.8	WSW
20250715	15:00	1.8	WSW
20250715	15:15	1.3	WSW
20250715	15:30	1.3	WSW
20250715	15:45	1.3	WSW
20250715	16:00	1.3	NNW
20250715	16:15	0.9	NE NE
20250715	16:30	1.3	WSW
20250715	16:45	0.9	WSW
20250715	17:00	1.3	WSW
20250715	17:15	1.8	WSW
20250715	17:30	1.3	WSW
20250715	17:45	1.8 1.8	WSW WSW
20250715 20250715	18:00 18:15	1.3	WSW
20250715	18:30	0.9	WSW
			WSW
20250715 20250715	18:45	0.4	VVSVV
	19:00	0	
20250715	19:15	0	
20250715	19:30	0	
20250715	19:45	0	
20250715	20:00	0.4	SW
20250715	20:15	0	SW
20250715	20:30	0	
20250715	20:45	0	SSE
20250715	21:00	0	SSE
20250715	21:15	0.4	SSE
20250715	21:30	0	SSE
20250715	21:45	0	SSE
20250715	22:00	0	SSE
20250715	22:15	0	SSE
20250715	22:30	0	SSE
20250715	22:45	0	
20250715	23:00	0	
20250715	23:15	0	
20250715	23:30	0	SSE
20250715	23:45	0	SSE

Date	Time	Wind	
	l	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250716	00:00	0.0	SSE
20250716	00:15	0.0	
20250716	00:30	0.0	
20250716	00:45	0.0	
20250716	01:00	0.0	
20250716	01:15	0.0	
20250716	01:30	0.0	
20250716	01:45	0.0	
20250716	02:00	0.0	
20250716	02:15	0.0	
20250716	02:30	0.0	
20250716	02:45	0.0	
20250716	03:00	0.0	
20250716	03:15	0.0	
20250716	03:30	0.0	
20250716	03:45	0.0	
20250716	04:00	0.0	
20250716	04:15	0.0	
20250716	04:30	0.0	
20250716	04:45	0.0	
20250716	05:00	0.0	SSE
20250716	05:15	0.4	SSE
20250716	05:30	0.4	SSE
20250716	05:45	0.0	SSE
20250716	06:00	0.4	SSE
20250716	06:15	0.0	
20250716	06:30	0.0	SE
20250716	06:45	0.0	SE
20250716	07:00	0.4	SE
20250716	07:15	0.4	SE
20250716	07:30	0.0	SE
20250716	07:45	0.0	SE
20250716	08:00	0.4	WSW
20250716	08:15	0.4	WSW
20250716	08:30	1.3	SE
20250716	08:45	0.9	WSW
20250716	09:00	0.9	WSW
20250716	09:15	1.3	WSW
20250716	09:30	1.3	WSW
20250716	09:45	1.8	WSW
20250716	10:00	2.2	WSW
20250716	10:15	1.8	N
20250716	10:30	2.2	NNW
20250716	10:45	1.8	NNW
20250716	11:00	1.8	N
20250716	11:15	2.2	WSW
20250716	11:30	1.8	N
20250716	11:45	1.8	NW
			1

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250716	12:00	1.8	WSW
20250716	12:15	1.8	WSW
20250716	12:30	2.2	N
20250716	12:45	1.8	NNW
20250716	13:00	1.8	N
20250716	13:15	1.8	NNW
20250716	13:30	1.3	WSW
20250716	13:45	1.8	NNW
20250716	14:00	1.8	N
20250716	14:15	2.7	N
20250716	14:30	1.8	WSW
20250716	14:45	1.8	WSW
20250716	15:00	1.8	N
20250716	15:15	1.3	N
20250716	15:30	1.3	WSW
20250716	15:45	1.3	WSW
20250716	16:00	1.3	WNW
20250716	16:15	1.3	WSW
20250716	16:30	1.8	WSW
20250716	16:45	1.3	WSW
20250716	17:00	1.3	WSW
20250716	17:15	1.3	NNW
20250716	17:30	1.3	N
20250716	17:45	0.9	WSW
20250716	18:00	0.9	WSW
20250716	18:15	0.9	WSW
20250716	18:30	0.4	WSW
20250716	18:45	0.4	WSW
20250716	19:00	0.4	WSW
20250716	19:15	0.4	WSW
20250716	19:30	0	ESE
20250716	19:45	0	SE
20250716	20:00	0.4	SE
20250716	20:15	0.9	SE
20250716	20:30	1.3	SE
20250716	20:45	1.3	SSE
20250716	21:00	0.9	SSE
20250716	21:15	0.4	SSE
20250716	21:30	0.4	SSE
20250716	21:45	0	SSE
20250716	22:00	0	
20250716	22:15	0	
20250716	22:30	0	
20250716	22:45	0	
20250716	23:00	0	
20250716		0	SSE
20250716	23:15	0	SSE
	23:30		
20250716	23:45	0	SSE

Date	Time	Wind	
	l	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250717	00:00	0.0	
20250717	00:15	0.0	
20250717	00:30	0.0	
20250717	00:45	0.0	
20250717	01:00	0.0	SSE
20250717	01:15	0.0	SSE
20250717	01:30	0.0	SSE
20250717	01:45	0.0	
20250717	02:00	0.0	SSE
20250717	02:15	0.0	
20250717	02:30	0.0	
20250717	02:45	0.0	SSE
20250717	03:00	0.0	SSE
20250717	03:15	0.4	SSE
20250717	03:30	0.0	SSE
20250717	03:45	0.4	SSE
20250717	04:00	0.0	SSE
20250717	04:15	0.0	
20250717	04:30	0.0	
20250717	04:45	0.0	
20250717	05:00	0.0	
20250717	05:15	0.0	
20250717	05:30	0.0	
20250717	05:45	0.0	
20250717	06:00	0.0	
20250717	06:15	0.0	
20250717	06:30	0.0	
20250717	06:45	0.0	
20250717	07:00	0.4	SSE
20250717	07:15	0.4	SSE
20250717	07:30	0.4	SE
20250717	07:45	0.0	SE
20250717	08:00	0.0	SE
20250717	08:15	0.4	S
20250717	08:30	1.3	WSW
20250717	08:45	0.9	SE
20250717	09:00	1.3	WSW
20250717	09:15	1.8	WSW
20250717	09:30	1.3	N
20250717	09:45	0.9	WNW
20250717	10:00	1.8	WSW
20250717	10:00	1.8	WSW
20250717	10:13	1.8	NNW
20250717	10:30	1.3	WSW
20250717	11:00	1.8	WNW
20250717	11:15	1.8	WSW
20250717		1.3	
20250717	11:30 11:45	0.9	NNW NNW
20230/1/	11.43	0.9	ININVV

(YYYYMMDD) (HH:MM) Speed (m/s) Wind Direction 20250717 12:00 0.9 WSW 20250717 12:15 1.3 WNW 20250717 12:30 0.9 WSW 20250717 13:00 0.9 WSW 20250717 13:15 0.9 WSW 20250717 13:30 0.9 WSW 20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 17:15 0.9 WSW 20250717	Doto	Time o	Wind	
	Date	Time	Speed	Wind Direction
20250717 12:00 0.9 WSW 20250717 12:15 1.3 WNW 20250717 12:30 0.9 WSW 20250717 12:45 0.9 WSW 20250717 13:00 0.9 WSW 20250717 13:15 0.9 WSW 20250717 13:30 0.9 WSW 20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15	(YYYYMIMIDD)	(HH:MIMI)	(m/s)	
20250717 12:30 0.9 WSW 20250717 12:45 0.9 WSW 20250717 13:00 0.9 WSW 20250717 13:30 0.9 WSW 20250717 13:30 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:45	20250717	12:00		WSW
20250717 12:45 0.9 WSW 20250717 13:00 0.9 WSW 20250717 13:15 0.9 W 20250717 13:30 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 <	20250717	12:15	1.3	WNW
20250717 12:45 0.9 WSW 20250717 13:00 0.9 WSW 20250717 13:15 0.9 W 20250717 13:30 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 <	20250717	12:30	0.9	WSW
20250717 13:15 0.9 WSW 20250717 13:30 0.9 WSW 20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:30 <	20250717		0.9	WSW
20250717 13:30 0.9 WSW 20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:45	20250717	13:00	0.9	WSW
20250717 13:30 0.9 WSW 20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:45	20250717			w
20250717 13:45 0.9 WSW 20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 NSW 20250717 16:00 0.9 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 <t< td=""><td></td><td></td><td></td><td>WSW</td></t<>				WSW
20250717 14:00 0.9 WSW 20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 NSW 20250717 16:30 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 <	20250717	13:45		WSW
20250717 14:15 0.9 NW 20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 SW 20250717 18:45 <t< td=""><td></td><td></td><td></td><td></td></t<>				
20250717 14:30 1.3 WSW 20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:30 <td< td=""><td>20250717</td><td>14:15</td><td></td><td>NW</td></td<>	20250717	14:15		NW
20250717 14:45 0.9 WSW 20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 S 20250717 18:30 0.4 SW 20250717 18:30 0.4 S 20250717 19:15 0.9 SSE 20250717 19:30 0	20250717	14:30		WSW
20250717 15:00 1.3 WSW 20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:30 0 <td>20250717</td> <td></td> <td></td> <td>WSW</td>	20250717			WSW
20250717 15:15 1.3 WSW 20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 SW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 20:15 0 SSW 20250717 20:30 0 <td></td> <td></td> <td></td> <td>WSW</td>				WSW
20250717 15:30 1.3 WSW 20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:30 0.4 S 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:45 0 20250717 20:30 0				WSW
20250717 15:45 1.3 NW 20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 SW 20250717 18:30 0.4 SW 20250717 18:30 0.4 SW 20250717 19:00 0.9 S 20250717 19:30 0.4 S 20250717 19:30 0.4 S 20250717 20:00 0 20250717 20:30 0 20250717 20:30 0				
20250717 16:00 0.9 WSW 20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 SW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 SE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:30 0 20250717 20:30 0 20250717 21:30 0				
20250717 16:15 1.3 WSW 20250717 16:30 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:30 0.4 SW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 SE 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:30 0.4 S 20250717 20:00 0 20250717 20:30 0 20250717 20:30 0 20250717 21:30 0	20250717			
20250717 16:45 1.3 WSW 20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 18:00 0.4 E 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:30 0.4 S 20250717 19:30 0.4 S 20250717 20:00 0 20250717 20:00 0 20250717 20:30 0 20250717 20:45 0 20250717 21:30 0 20250717 21:45 0 <t< td=""><td></td><td></td><td></td><td></td></t<>				
20250717 16:45 1.3 WSW 20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:30 0 20250717 20:45 0 20250717 21:30 0 20250717 21:30 0 20250717 22:45 0				
20250717 17:00 1.3 WSW 20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:30 0				
20250717 17:15 0.9 WSW 20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:30 0 20250717 21:30 0 20250717 21:45 0 20250717 22:45 0 20250717 22:45 0				
20250717 17:30 0.9 WSW 20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:45 0 20250717 22:45 0 20250717 22:45 0				
20250717 17:45 0.9 WSW 20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:30 0 20250717 22:30 0 20250717 22:45 0 <				
20250717 18:00 0.4 E 20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 SE 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 22:00 0 20250717 22:30 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 </td <td></td> <td></td> <td></td> <td></td>				
20250717 18:15 0.9 WSW 20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:30 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:00 0 <td></td> <td></td> <td></td> <td></td>				
20250717 18:30 0.4 SW 20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:00 0 20250717 23:30 0.4 SSW <td></td> <td></td> <td></td> <td></td>				
20250717 18:45 0.4 S 20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 19:00 0.9 S 20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:30 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 20250717 23:30 0.4 SSW				
20250717 19:15 0.9 SSE 20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 20250717 23:30 0.4 SSW				
20250717 19:30 0.4 S 20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 19:45 0.4 S 20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 20250717 23:30 0.4 SSW	20250717	19:30	0.4	S
20250717 20:00 0 20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 22:45 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:30 0 20250717 23:315 0 20250717 23:30 0.4 SSW				
20250717 20:15 0 SSW 20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 23:00 0 20250717 23:00 0 20250717 23:30 0.4 SSW				
20250717 20:30 0 20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:35 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				SSW
20250717 20:45 0 20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 21:00 0 SSW 20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 21:15 0 20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				SSW
20250717 21:30 0 20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 21:45 0 20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 22:00 0 20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 22:15 0 20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 22:30 0 20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW			0	
20250717 22:45 0 20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 23:00 0 20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 23:15 0 20250717 23:30 0.4 SSW				
20250717 23:30 0.4 SSW				
				SSW
20230/1/ 23.43 0 3377	20250717	23:45	0	SSW

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250718	00:00	0.0	SSW
20250718	00:15	0.0	
20250718	00:30	0.0	
20250718	00:45	0.0	
20250718	01:00	0.0	SSW
20250718	01:15	0.0	SSW
20250718	01:30	0.0	
20250718	01:45	0.0	
20250718	02:00	0.0	
20250718	02:15	0.0	
20250718	02:30	0.0	
20250718	02:45	0.0	
20250718	03:00	0.0	
20250718	03:15	0.9	SSW
20250718	03:30	0.4	SSW
20250718	03:45	0.0	SSW
20250718	04:00	0.4	SSW
20250718	04:15	0.9	SSW
20250718	04:30	0.4	ESE
20250718	04:45	2.7	SE
20250718	05:00	2.7	SE
20250718	05:15	2.7	SE
20250718	05:30	0.9	SE
20250718	05:45	0.0	NW
20250718	06:00	0.4	SSE
20250718	06:15	0.4	SE
20250718	06:30	0.4	NNW
20250718	06:45	0.0	
20250718	07:00	0.0	NNW
	07:00		
20250718		0.0	ENE N
20250718	07:30 07:45	0.9	NNE
20250718		0.0	+
20250718	08:00	0.4	NNE NNE
20250718	08:15		+
20250718	08:30	0.9	SE
20250718	08:45	1.3	SE
20250718	09:00	1.3	SE
20250718	09:15	0.9	SE
20250718	09:30	0.4	NNW
20250718	09:45	0.4	NNW
20250718	10:00	0.4	NNE
20250718	10:15	1.3	SE
20250718	10:30	0.9	SSE
20250718	10:45	0.9	SE
20250718	11:00	2.2	N
20250718	11:15	1.3	NNW
20250718	11:30	1.3	WSW
20250718	11:45	1.8	N

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250718	12:00	0.9	N
20250718	12:15	0.4	SE
20250718	12:30	0.9	ESE
20250718	12:45	0.0	ESE
20250718	13:00	0.0	ESE
20250718	13:15	0.0	Е
20250718	13:30	0.4	Е
20250718	13:45	3.1	SE
20250718	14:00	1.8	SE
20250718	14:15	0.9	SE
20250718	14:30	0.9	SSE
20250718	14:45	0.4	SSE
20250718	15:00	0.0	
20250718	15:15	0.9	SSE
20250718	15:30	0.4	SSE
20250718	15:45	0.0	SSE
20250718	16:00	0.4	NNW
20250718	16:15	0.4	NNW
20250718	16:30	0.4	WSW
20250718	16:45	0.9	SE
20250718	17:00	0.4	SSE
20250718	17:15	0.9	SE
20250718	17:30	0.4	SE
20250718	17:45	0.0	E
20250718	18:00	0	E
20250718	18:15	0	
20250718	18:30	0.4	E
20250718	18:45	0	ESE
20250718	19:00	0	ESE
20250718	19:15	0.4	ESE
20250718	19:30	0	
20250718	19:45	0	S
20250718	20:00	0.4	S
20250718	20:15	0	SSE
20250718	20:30	0	
20250718	20:45	0	
20250718	21:00	0	
20250718	21:15	0	
20250718	21:30	0.4	SSE
20250718	21:45	0.4	SSE
20250718	22:00	0.4	SSE
20250718	22:15	0.9	SSE
20250718	22:30	0.9	SSE
20250718	22:45	0.4	SSE
20250718	23:00	0.9	SSE
20250718	23:15	0.4	SE
20250718	23:30	0.4	SE
20250718	23:45	0	
20230/10	23.43	U	_

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250719	00:00	0.4	SE
20250719	00:15	0.4	SE
20250719	00:30	0.0	SE
20250719	00:45	0.4	SE
20250719	01:00	0.4	SE
20250719	01:15	0.4	SSW
20250719	01:30	0.9	SE
20250719	01:45	0.0	SE
20250719	02:00	0.0	SE
20250719	02:15	0.4	SE
20250719	02:30	0.4	N
20250719	02:45	0.4	ENE
20250719	03:00	0.4	Е
20250719	03:15	0.4	Е
20250719	03:30	0.9	Е
20250719	03:45	0.4	SE
20250719	04:00	0.4	SE
20250719	04:15	0.0	NNE
20250719	04:30	0.4	NNW
20250719	04:45	0.0	NNW
20250719	05:00	0.0	
20250719	05:15	0.0	NNW
20250719	05:30	0.4	NNW
20250719	05:45	0.4	NNW
20250719	06:00	0.0	NNW
20250719	06:15	0.0	NNW
20250719	06:30	0.0	
20250719	06:45	0.0	NNW
20250719	07:00	0.4	NNW
20250719	07:15	0.4	N
20250719	07:30	0.4	N
20250719	07:45	0.9	NNW
20250719	08:00	1.3	NNW
20250719	08:15	1.3	NNW
20250719	08:30	1.3	NNW
20250719	08:45	1.3	NNW
20250719	09:00	1.3	NNW
20250719	09:15	0.9	NNW
20250719	09:30	1.3	NNW
20250719	09:45	1.8	NNW
20250719	10:00	1.8	NNW
20250719	10:15	1.3	NNW
20250719	10:30	1.8	NNW
20250719	10:45	1.8	NNW
20250719	11:00	1.3	NNW
20250719	11:15	1.8	NNW
20250719	11:30	1.8	NW
20250719	11:45	1.8	NW
		-	-

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250719	12:00	2.7	NW
20250719	12:15	2.2	NW
20250719	12:30	1.8	NNW
20250719	12:45	1.8	NNW
20250719	13:00	1.8	NNW
20250719	13:15	1.3	NW
20250719	13:30	1.3	NNW
20250719	13:45	1.3	N
20250719	14:00	1.3	NW
20250719	14:15	1.3	NW
20250719	14:30	1.3	NNW
20250719	14:45	0.9	NNW
20250719	15:00	0.9	NNE
20250719	15:15	0.4	NE
20250719	15:30	0.4	NW
20250719	15:45	1.3	N
20250719	16:00	0.4	NNE
20250719	16:15	0.4	ESE
20250719	16:30	1.8	NW
20250719	16:45	1.8	NNW
20250719	17:00	0.9	NNW
20250719	17:15	1.3	NW
20250719	17:30	0.4	NE
20250719	17:45	0.4	N
20250719	18:00	0.9	N
20250719	18:15	0.9	N
20250719	18:30	0.9	NNW
20250719	18:45	0.9	NNW
20250719	19:00	0.9	NNW
20250719	19:15	2.2	SE
20250719	19:30	1.8	SE
20250719	19:45	1.3	SE
20250719	20:00	2.7	SE
20250719	20:15	3.1	SE
20250719	20:30	2.2	SE
20250719	20:45	2.7	SE
20250719	21:00	2.7	SE
20250719	21:15	2.7	SE
20250719	21:30	0.9	ENE
20250719	21:45	0.4	NE
20250719	22:00	0.9	NNW
20250719	22:15	0.4	N
20250719	22:30	0	NNE
20250719	22:45	0	NNE
20250719	23:00	0	NNE
20250719	23:15	0	
20250719	23:30	0	
20250719	23:45	0	

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250720	00:00	0.0	
20250720	00:15	0.0	ENE
20250720	00:30	0.0	ENE
20250720	00:45	0.4	ENE
20250720	01:00	0.0	WNW
20250720	01:15	0.0	
20250720	01:30	0.0	
20250720	01:45	0.0	
20250720	02:00	0.0	
20250720	02:15	0.0	
20250720	02:30	0.0	
20250720	02:45	0.0	N
20250720	03:00	0.9	N
20250720	03:15	1.3	NNW
20250720	03:30	0.9	NNW
20250720	03:45	1.8	NNW
20250720	04:00	2.2	NNW
20250720	04:15	3.1	NW
20250720	04:30	2.2	NNW
20250720	04:45	2.2	NNW
20250720	05:00	2.2	NNW
20250720	05:15	2.7	NW
20250720	05:30	2.7	NNW
20250720	05:45	2.7	NNW
20250720	06:00	2.2	NNW
20250720	06:15	2.2	NNW
20250720	06:30	2.2	NNW
20250720	06:45	1.8	NNW
20250720	07:00	2.7	NW
20250720	07:15	2.7	NNW
20250720	07:30	3.1	NNW
20250720	07:45	3.6	NNW
20250720	08:00	4.0	NW
20250720	08:15	4.5	NW
20250720	08:30	5.8	NW
20250720	08:45	5.8	NW
20250720	09:00	5.4	NW
20250720	09:15	6.3	NW
20250720	09:30	4.5	NNW
20250720	09:45	4.0	NNW
20250720	10:00	4.0	N
20250720	10:15	3.6	NW
20250720	10:30	3.6	NNW
20250720	10:45	3.1	N
20250720	11:00	3.1	SE
20250720	11:15	3.6	SE
20250720	11:30	4.9	SE
20250720	11:45	4.5	SE

Date (YYYYMMDD) Time (HH:MM) Wind Speed (m/s) Wind Direction (m/s) 20250720 12:00 4.5 SE 20250720 12:15 4.0 SE 20250720 12:30 4.9 SE 20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE 20250720 14:30 4.0 SE
(YYYYMMDD) (HH:MM) (m/s) 20250720 12:00 4.5 SE 20250720 12:15 4.0 SE 20250720 12:30 4.9 SE 20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 12:00 4.5 SE 20250720 12:15 4.0 SE 20250720 12:30 4.9 SE 20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 12:15 4.0 SE 20250720 12:30 4.9 SE 20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 12:30 4.9 SE 20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 12:45 5.4 SE 20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 13:00 5.4 SE 20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 13:15 4.5 SE 20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 13:30 4.0 SE 20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 13:45 4.5 SE 20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 14:00 4.9 SE 20250720 14:15 4.9 SE
20250720 14:15 4.9 SE
20230720 14.30 4.0 30
20250720 14:45 3.6 SE
20250720 15:00 3.6 SE
20250720 15:15 3.1 SE
20250720 15:30 3.6 SE
20250720 15:45 2.7 SE
20250720 16:00 2.2 SE
20250720 16:15 2.7 SE
20250720 16:30 3.1 SE
20250720 16:45 2.7 ESE
20250720 17:00 3.1 SE
20250720 17:15 3.6 SE
20250720 17:30 2.2 SE
20250720 17:45 3.6 SE
20250720 18:00 3.6 SE
20250720 18:15 3.6 SE
20250720 18:30 2.2 SE
20250720 18:45 4.5 SE
20250720 19:00 4 SE
20250720 19:15 3.1 SE
20250720 19:30 2.7 SE
20250720 19:45 4 SE
20250720 20:00 3.1 SE
20250720 20:15 3.6 SE
20250720 20:30 3.6 SE
20250720 20:45 3.1 SE
20250720 21:00 2.7 SE
20250720 21:15 3.1 SE
20250720 21:30 1.8 SE
20250720 21:45 2.2 SE
20250720 22:00 2.7 SE
20250720 22:15 1.8 SE
20250720 22:30 2.7 SE
20250720 22:45 2.7 SE
20250720 23:00 2.7 SE
20250720 23:15 2.2 SE
20250720 23:30 2.2 SE
20250720 23:45 2.2 SE

Data	Time	Wind	
Date		Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250721	00:00	1.8	SE
20250721	00:15	2.2	SE
20250721	00:30	1.8	SE
20250721	00:45	1.8	SE
20250721	01:00	1.8	SE
20250721	01:15	2.2	SE
20250721	01:30	2.7	SE
20250721	01:45	1.3	SE
20250721	02:00	1.3	SE
20250721	02:15	1.3	SE
20250721	02:30	1.3	SE
20250721	02:45	1.3	SE
20250721	03:00	0.9	E
20250721	03:15	1.3	SE
20250721	03:30	0.9	SE
20250721	03:45	1.8	SE
20250721	04:00	1.3	SE
20250721	04:15	0.9	SE
20250721	04:30	1.3	SE
20250721	04:45	0.4	ESE
20250721	05:00	0.9	SE
20250721	05:15	0.9	ESE
20250721	05:30	0.9	SE
20250721	05:45	0.9	SE
20250721	06:00	1.3	SE
20250721	06:15	1.3	SE
20250721	06:30	1.3	SE
20250721	06:45	1.3	SE
20250721	07:00	1.3	SE
			SE
20250721	07:15	1.3	SE SE
20250721	07:30 07:45	1.3 1.8	SE
20250721			+
20250721	08:00	1.8	SE
20250721	08:15		ESE
20250721	08:30	1.3	SE
20250721	08:45	1.8	SE
20250721	09:00	1.3	SE
20250721	09:15	1.8	SE
20250721	09:30	1.8	SE
20250721	09:45	1.8	SE
20250721	10:00	1.3	SE
20250721	10:15	0.9	SE
20250721	10:30	0.9	SE
20250721	10:45	0.9	E
20250721	11:00	0.9	E
20250721	11:15	1.8	SE
20250721	11:30	1.3	SE
20250721	11:45	0.9	ESE

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250721	12:00	1.3	ESE
20250721	12:15	1.3	SE
20250721	12:30	0.9	SE
20250721	12:45	1.8	SE
20250721	13:00	1.3	SE
20250721	13:15	1.8	SE
20250721	13:30	1.8	SE
20250721	13:45	2.2	SE
20250721	14:00	1.3	SE
20250721	14:15	1.3	SE
20250721	14:30	1.3	SE
20250721	14:45	1.3	ESE
20250721	15:00	0.9	SE
20250721	15:15	0.4	ENE
20250721	15:30	0.9	SE
20250721	15:45	1.3	SE
20250721	16:00	0.9	SE
20250721	16:15	0.9	SE
20250721	16:30	0.9	SE
20250721	16:45	1.3	SE
20250721	17:00	1.3	SE
20250721	17:15	2.2	SE
20250721	17:30	1.8	SE
20250721	17:45	0.9	SE
20250721	18:00	0.9	SE
20250721	18:15	1.3	ESE
20250721	18:30	0.9	SE
20250721	18:45	1.8	SE
20250721	19:00	2.2	SE
20250721	19:15	2.7	SE
20250721	19:30	1.8	SE
20250721	19:45	1.3	SE
20250721	20:00	1.3	SE
20250721	20:15	1.8	SE
20250721	20:30	1.8	SE
20250721	20:45	1.8	SE
20250721	21:00	1.8	ESE
20250721	21:15	2.2	SE
20250721	21:30	2.2	SE
20250721	21:45	2.2	SE
20250721	22:00	2.2	SE
20250721	22:15	2.7	SE
20250721	22:30	2.7	SE
20250721	22:45	2.7	SE
20250721	23:00	2.7	SE
20250721	23:15	2.7	SE
20250721	23:30	2.7	SE
20250721	23:45	2.2	SE
20230721	23.43	۷.۷	J 3E

Date	Time	Wind	
	1	Speed	Wind Direction
(YYYYMMDD)	(nn:iviivi)	(m/s)	
20250722	00:00	2.2	SE
20250722	00:15	1.8	SE
20250722	00:30	2.7	SE
20250722	00:45	2.2	SE
20250722	01:00	1.3	SE
20250722	01:15	0.9	SE
20250722	01:30	1.3	SE
20250722	01:45	1.3	SE
20250722	02:00	1.3	SE
20250722	02:15	1.3	SE
20250722	02:30	1.8	SE
20250722	02:45	1.8	SE
20250722	03:00	1.8	SE
20250722	03:15	2.2	SE
20250722	03:30	2.2	SE
20250722	03:45	2.2	SE
20250722	04:00	2.2	SE
20250722	04:15	2.7	SE
20250722	04:30	2.7	SE
20250722	04:45	2.2	SE
20250722	05:00	2.2	SE
20250722	05:15	2.2	SE
20250722	05:30	2.2	SE
20250722	05:45	2.2	SE
20250722	06:00	2.2	SE
20250722	06:15	2.7	SE
20250722	06:30	2.2	SE
20250722	06:45	2.7	SE
20250722	07:00	3.1	SE
20250722	07:15	2.7	SE
20250722	07:30	2.7	SE
20250722	07:45	3.1	SE
20250722	08:00	3.6	SE
20250722	08:00	3.6	SE SE
20250722		3.1	SE SE
20250722	08:30 08:45		SE SE
		3.1	
20250722	09:00	2.7 2.7	SE SE
20250722	09:15		SE
20250722	09:30	2.2	SE
20250722	09:45	2.2	SE
20250722	10:00	2.7	SE
20250722	10:15	3.1	SE
20250722	10:30	3.1	SE
20250722	10:45	2.2	SE
20250722	11:00	2.7	SE
20250722	11:15	2.7	SE
20250722	11:30	1.8	SE
20250722	11:45	2.2	SE

Date	Time	Wind	Wind Direction
(YYYYMMDD)	(HH:MM)	Speed	Wind Direction
20250722	12:00	(m/s) 2.2	SE
20250722	12:15	2.7	SE
20250722	12:30	2.7	SE
			SE
20250722	12:45	2.2	+
20250722	13:00	2.2	SE
20250722	13:15	2.2	SE
20250722	13:30	2.2	SE
20250722	13:45	2.7	SE
20250722	14:00	3.1	SE
20250722	14:15	2.7	SE
20250722	14:30	2.7	SE
20250722	14:45	3.1	SE
20250722	15:00	3.1	SE
20250722	15:15	3.1	SE
20250722	15:30	3.6	SE
20250722	15:45	3.1	SE
20250722	16:00	3.1	SE
20250722	16:15	1.8	SE
20250722	16:30	1.8	SE
20250722	16:45	2.2	SE
20250722	17:00	1.8	SE
20250722	17:15	1.3	SE
20250722	17:30	2.2	SE
20250722	17:45	2.2	ESE
20250722	18:00	2.2	SE
20250722	18:15	2.2	SE
20250722	18:30	1.8	SE
20250722	18:45	1.3	SE
20250722	19:00	1.8	SE
20250722	19:15	1.3	SE
20250722	19:30	1.3	ESE
20250722	19:45	1.3	SE
20250722	20:00	1.3	SE
20250722	20:15	1.3	SE
20250722	20:30	1.3	SE
20250722	20:45	1.3	SE
20250722	21:00	0.9	WSW
20250722	21:15	1.3	SE
20250722	21:30	0.4	SSW
20250722	21:45	0.4	SSE
20250722	22:00	0.9	ESE
20250722	22:15	0.9	NE
20250722	22:30	0.4	WSW
20250722	22:45	0.4	SE
20250722	23:00	0.9	SE
20250722	23:15	0.4	ENE
20250722	23:30	0.9	ENE
20250722	23:45	2.2	SE
			·

Date	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250723	00:00	1.8	SE
20250723	00:15	1.8	SE
20250723	00:30	2.7	SE
20250723	00:45	2.2	SE
20250723	01:00	2.2	SE
20250723	01:15	2.7	SE
20250723	01:30	2.7	SE
20250723	01:45	1.8	SE
20250723	02:00	1.8	SE
20250723	02:15	2.2	SE
20250723	02:30	1.8	SE
20250723	02:45	1.8	SE
20250723	03:00	2.2	SE
20250723	03:15	2.2	SE
20250723	03:30	2.2	SE
20250723	03:45	2.2	SE
20250723	04:00	1.8	SE
20250723	04:15	1.8	SE
20250723	04:30	1.3	SE
20250723	04:45	1.3	SE
20250723	05:00	1.3	SE
20250723	05:15	0.9	SE
20250723	05:30	0.9	ESE
20250723	05:45	0.4	SE
20250723	06:00	1.3	SE
20250723	06:15	1.8	SE
20250723	06:30	0.9	ENE
20250723	06:45	0.9	SE
	07:00	0.9	SE
20250723			
20250723	07:15	0.9	N NNNA/
20250723	07:30	0.4	NNW
20250723	07:45	0.0	N
20250723	08:00	0.0	
20250723	08:15	0.0	 NINDA/
20250723	08:30	0.4	NNW
20250723	08:45	0.9	N
20250723	09:00	0.9	N
20250723	09:15	0.9	N N
20250723	09:30	0.4	NNW
20250723	09:45	0.9	S
20250723	10:00	0.9	N -
20250723	10:15	0.4	E
20250723	10:30	0.9	E
20250723	10:45	0.9	NNW
20250723	11:00	0.9	N
20250723	11:15	0.9	N
20250723	11:30	0.9	SE
20250723	11:45	0.9	ESE

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250723	12:00	1.3	SE
20250723	12:15	1.3	SE
20250723	12:30	0.9	ESE
20250723	12:45	1.3	SE
20250723	13:00	1.3	ESE
20250723	13:15	0.9	SE
20250723	13:30	0.9	SE
20250723	13:45	2.2	SE
20250723	14:00	1.8	SE
20250723	14:15	0.9	ESE
20250723	14:30	1.8	SE
20250723	14:45	1.3	SE
20250723	15:00	1.3	SE
20250723	15:15	1.8	ESE
20250723	15:30	2.2	SE
20250723	15:45	1.8	SE
20250723	16:00	1.3	SE
20250723	16:15	1.8	SE
20250723	16:30	1.8	SE
20250723	16:45	1.8	SE
20250723	17:00	1.8	SE
20250723	17:15	1.3	SE
20250723	17:30	0.9	SE
20250723	17:45	1.3	SE
20250723	18:00	0.9	SE
20250723	18:15	1.3	SE
20250723	18:30	0.9	SE
20250723	18:45	0.9	SE
20250723	19:00	0.9	SE
20250723	19:15	0.9	SE
20250723	19:30	0.4	SE
20250723	19:45	0.4	ESE
20250723	20:00	0.4	ESE
20250723	20:15	0	ESE
20250723	20:30	0.4	E
20250723	20:45	0	E
20250723	21:00	0	E
20250723	21:15	0.4	E
20250723	21:30	0.4	E
20250723	21:45	0	E
20250723	22:00	0	
20250723	22:15	0	E
20250723	22:30	0	ENE
20250723	22:45	0	
20250723	23:00	0	ENE
20250723	23:15	0	ENE
20250723	23:15	0	E
20250723	23:30	0	E E
20230723	25.45	U	<u> </u>

Doto	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250724	00:00	0.0	E
20250724	00:15	0.0	E
20250724	00:30	0.0	E
20250724	00:45	0.0	
20250724	01:00	0.0	
20250724	01:15	0.0	
20250724	01:30	0.0	
20250724	01:45	0.0	
20250724	02:00	0.0	
20250724	02:15	0.0	
20250724	02:30	0.0	
20250724	02:45	0.0	
20250724	03:00	0.0	
20250724	03:15	0.0	
20250724	03:30	0.0	
20250724	03:45	0.0	
20250724	04:00	0.0	
20250724	04:15	0.0	
20250724	04:30	0.0	ENE
20250724	04:45	0.0	ENE
20250724	05:00	0.0	ENE
20250724	05:15	0.0	ENE
20250724	05:30	0.0	
20250724	05:45	0.0	
20250724	06:00	0.0	
20250724	06:15	0.0	
20250724	06:30	0.4	NNE
20250724	06:45	0.9	N
20250724	07:00	0.4	N
20250724	07:15	0.4	N
20250724	07:30	0.4	N
20250724	07:45	1.3	N
20250724	08:00	1.3	NNW
20250724	08:15	1.3	NNW
20250724	08:30	1.3	NNW
20250724	08:45	1.3	NNW
20250724	09:00	1.3	NNW
20250724	09:15	1.3	NNW
20250724	09:30	1.3	N
20250724	09:45	1.3	N
20250724	10:00	1.3	NNW
20250724	10:15	0.9	NNW
20250724	10:30	0.9	N
20250724	10:45	0.9	N
20250724	11:00	0.9	NNW
20250724	11:15	1.3	N
20250724	11:30	1.3	NNW
20250724	11:45	1.3	NNW
			1

Doto	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250724	12:00	1.3	NNW
20250724	12:15	0.9	NNW
20250724	12:30	1.3	N
20250724	12:45	1.3	NW
20250724	13:00	0.9	NNW
20250724	13:15	1.3	NNW
20250724	13:30	2.2	N
20250724	13:45	0.9	NW
20250724	14:00	0.4	W
20250724	14:15	1.8	SE
20250724	14:30	2.2	WSW
20250724	14:45	1.3	WSW
20250724	15:00	1.8	WSW
20250724	15:15	1.8	WSW
20250724	15:30	0.9	WSW
20250724	15:45	1.3	WSW
20250724	16:00	0.4	NNE
20250724	16:15	2.2	SE
20250724	16:30	1.3	SE
20250724	16:45	1.3	SSE
20250724	17:00	1.8	SE
20250724	17:15	2.2	SE
20250724	17:30	1.3	SE
20250724	17:45	1.8	SE
20250724	18:00	1.3	SE
20250724	18:15	1.3	SE
20250724	18:30	1.3	SE
20250724	18:45	0.9	SSE
20250724	19:00	0.9	ENE
20250724	19:00	0.4	E
20250724			SSE
20250724	19:30 19:45	0	SSE
20250724			SSE
20250724	20:00 20:15	0.4	SSE
20250724 20250724	20:30	0.4	SE SE
	20:45	0	SE SE
20250724	21:00) SE
20250724	21:15	0	
20250724	21:30	0	
20250724	21:45	0	
20250724	22:00	0	
20250724	22:15	0	SE
20250724	22:30	0	
20250724	22:45	0	SE
20250724	23:00	0	SE
20250724	23:15	0	
20250724	23:30	0	
20250724	23:45	0	SE

Doto	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250725	00:00	0.0	SE
20250725	00:15	0.0	SE
20250725	00:30	0.0	
20250725	00:45	0.0	SE
20250725	01:00	0.0	SE
20250725	01:15	0.0	SE
20250725	01:30	0.0	SE
20250725	01:45	0.0	SE
20250725	02:00	0.0	SE
20250725	02:15	0.0	SE
20250725	02:30	0.0	SE
20250725	02:45	0.0	SE
20250725	03:00	0.4	SE
20250725	03:15	0.0	
20250725	03:30	0.0	SE
20250725	03:45	0.4	SE
20250725	04:00	0.4	SE
20250725	04:15	0.0	SE
20250725	04:30	0.0	
20250725	04:45	0.0	
20250725	05:00	0.0	SE
20250725	05:15	0.4	SE
20250725	05:30	0.0	
20250725	05:45	0.0	SE
20250725	06:00	0.4	SE
20250725	06:15	0.4	SE
20250725	06:30	0.4	SE
20250725	06:45	0.0	SE
20250725	07:00	0.0	
20250725	07:15	0.0	
20250725	07:30	0.0	SSE
20250725	07:45	0.0	SSE
20250725	08:00	0.9	WSW
20250725	08:15	0.4	N
20250725	08:30	1.3	N
20250725	08:45	1.3	N
20250725	09:00	0.9	NNW
20250725	09:15	0.9	NNW
20250725	09:30	0.9	NNW
20250725	09:45	1.3	N
20250725	10:00	0.9	N
20250725	10:15	1.3	NNW
20250725	10:30	1.3	NNW
20250725	10:45	1.8	N
20250725	11:00	1.3	N
20250725	11:15	1.8	N
20250725	11:30	1.8	NNW
20250725	11:45	1.8	N

Data	Times	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250725	12:00	1.8	N
20250725	12:15	2.2	NNW
20250725	12:30	1.3	NNW
20250725	12:45	1.3	NNW
20250725	13:00	1.3	NNW
20250725	13:15	1.3	WNW
20250725	13:30	1.3	NNW
20250725	13:45	0.9	NNW
20250725	14:00	0.9	N
20250725	14:15	0.9	WSW
20250725	14:30	1.3	WSW
20250725	14:45	0.9	WSW
20250725	15:00	0.4	WSW
20250725	15:15	1.3	WSW
20250725	15:30	0.4	SE
20250725	15:45	0.9	SSE
20250725	16:00	0.9	SSE
20250725	16:15	0.4	SE
20250725	16:30	0.4	S
20250725	16:45	0.0	NW
20250725	17:00	0.4	WSW
20250725	17:15	0.9	WSW
20250725	17:30	0.4	ESE
20250725	17:45	0.4	SW
20250725	18:00	0.9	SSE
20250725	18:15	0.4	SE
20250725	18:30	0.4	SE
20250725	18:45	0.9	N
20250725	19:00	1.8	N
20250725	19:15	2.7	SE
20250725	19:30	3.6	SE
20250725	19:45	3.6	SE
20250725	20:00	3.6	SE
20250725	20:15	1.8	SE
20250725	20:30	0.4	ESE
20250725	20:45	0	NNE
20250725	21:00	0.4	ESE
20250725	21:15	0.4	ESE
20250725	21:30	0	
20250725	21:45	0.4	N
20250725	22:00	0.4	NE
20250725	22:15	0.4	NE
20250725	22:30	0.4	NE
20250725	22:45	0.4	SE
20250725	23:00	0.9	SE
20250725	23:15	0	SE
20250725	23:30	0.4	N
20250725	23:45	0	E
			-

Data	Time	Wind	
Date	l	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250726	00:00	0.0	
20250726	00:15	0.0	Е
20250726	00:30	0.0	E
20250726	00:45	0.4	E
20250726	01:00	0.4	ESE
20250726	01:15	0.9	ESE
20250726	01:30	0.4	ESE
20250726	01:45	0.0	ESE
20250726	02:00	0.0	ESE
20250726	02:15	0.0	
20250726	02:30	0.0	
20250726	02:45	0.0	
20250726	03:00	0.0	ESE
20250726	03:15	0.0	ESE
20250726	03:30	0.0	ESE
20250726	03:45	0.4	ESE
20250726	04:00	0.4	ESE
20250726	04:15	0.4	ESE
20250726	04:30	0.0	ESE
20250726	04:45	0.4	ESE
20250726	05:00	0.4	ESE
20250726	05:15	0.4	ESE
20250726	05:30	0.0	
20250726	05:45	0.0	
20250726	06:00	0.0	
20250726	06:15	0.4	ESE
20250726	06:30	0.0	
20250726	06:45	0.4	ESE
20250726	07:00	0.0	
20250726	07:15	0.0	
20250726	07:30	0.0	
20250726	07:45	0.0	
20250726	08:00	0.0	
20250726	08:15	0.9	WSW
20250726	08:30	0.4	SSW
20250726	08:45	0.4	WSW
20250726	09:00	0.4	N
20250726	09:15	0.9	SE
20250726	09:30	0.9	N N
20250726	09:45	0.4	NNW
20250726	10:00	0.4	N
20250726	10:15	0.4	N
20250726	10:30	0.4	N
20250726	10:45	0.4	NNW
20250726	11:00	0.9	NNW
20250726	11:15	1.3	N
20250726	11:30	1.3	NNW
20250726	11:45	0.9	NNW
			1

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250726	12:00	1.3	N
20250726	12:15	1.3	N
20250726	12:30	0.9	WNW
20250726	12:45	0.9	WSW
20250726	13:00	1.3	WSW
20250726	13:15	1.3	WSW
20250726	13:30	0.9	SE
20250726	13:45	0.9	WSW
20250726	14:00	0.9	WSW
20250726	14:15	1.8	WSW
20250726	14:30	1.3	WSW
20250726	14:45	1.3	SE
20250726	15:00	0.9	WSW
20250726	15:15	1.3	WSW
20250726	15:30	0.9	NNW
20250726	15:45	1.3	NNW
20250726	16:00	1.3	WSW
20250726	16:15	0.9	SE
20250726	16:30	0.9	WSW
20250726	16:45	1.3	N
20250726	17:00	1.3	WSW
20250726	17:15	1.3	WSW
20250726	17:30	0.9	WSW
20250726	17:45	0.9	WSW
20250726	18:00	0.9	WSW
20250726	18:15	0.9	WSW
20250726	18:30	0.9	WSW
20250726	18:45	0	WSW
20250726	19:00	0.4	WSW
20250726	19:15	0.4	WSW
20250726	19:30	0.4	WSW
20250726	19:45	0.4	SE
20250726	20:00	0	SSW
20250726	20:15	0.4	SW
20250726	20:30	0.4	SW
20250726	20:45	0	SW
20250726	21:00	0	
20250726	21:15	0	SW
20250726	21:30	0.4	SW
20250726	21:45	0.4	SW
20250726	22:00	0.4	SW
20250726	22:15	0	SW
20250726	22:30	0	
20250726	22:45	0	SW
20250726	23:00	0	
20250726	23:15	0	SW
20250726	23:30	0	SW
20250726	23:45	0	

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:IVIIVI)	(m/s)	
20250727	00:00	0.0	SW
20250727	00:15	0.0	
20250727	00:30	0.0	
20250727	00:45	0.0	SW
20250727	01:00	0.0	SW
20250727	01:15	0.0	
20250727	01:30	0.0	
20250727	01:45	0.0	
20250727	02:00	0.0	
20250727	02:15	0.0	SW
20250727	02:30	0.0	SW
20250727	02:45	0.4	SW
20250727	03:00	0.0	SSW
20250727	03:15	0.0	
20250727	03:30	0.4	SSW
20250727	03:45	0.0	SSW
20250727	04:00	0.0	SSW
20250727	04:15	0.0	SSW
20250727	04:30	0.4	SSW
20250727	04:45	0.4	SSW
20250727	05:00	0.4	SSW
20250727	05:15	0.0	3377
20250727	05:30	0.4	SSW
20250727	05:45	0.0	SSW
20250727	06:00	0.0	
20250727	06:15	0.0	
20250727	06:30	0.0	
20250727	06:45	0.0	
20250727	07:00	0.0	
20250727	07:00		
20250727	07:30	0.0	
20250727	07:45	0.4	WSW
20250727	08:00	0.4	WSW
20250727	08:15	1.3	WSW
20250727			WSW
20250727	08:30	0.9 1.3	WSW
	08:45		
20250727 20250727	09:00	0.9 1.3	WSW WSW
	09:15		
20250727	09:30	0.9	WSW
20250727	09:45	1.3	N
20250727	10:00	1.8	N
20250727	10:15	1.3	N
20250727	10:30	1.3	WSW
20250727	10:45	1.3	WSW
20250727	11:00	1.3	NNW
20250727	11:15	1.3	WSW
20250727	11:30	1.8	WSW
20250727	11:45	1.3	WSW

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250727	12:00	1.3	WSW
20250727	12:15	1.8	NNW
20250727	12:30	1.8	WSW
20250727	12:45	1.3	SW
20250727	13:00	1.3	NW
20250727	13:15	1.8	N
20250727	13:30	1.8	WSW
20250727	13:45	1.8	WSW
20250727	14:00	1.8	WSW
20250727	14:15	2.2	WSW
20250727	14:30	1.8	WSW
20250727	14:45	1.8	WSW
20250727	15:00	1.8	WSW
20250727	15:15	1.8	WSW
20250727	15:30	1.8	N
20250727	15:45	1.3	NNW
20250727	16:00	1.3	WSW
20250727	16:15	0.9	WSW
20250727	16:30	1.8	WSW
20250727	16:45	1.8	WSW
20250727	17:00	0.9	WSW
20250727	17:15	0.9	WSW
20250727	17:30	0.9	WSW
20250727	17:45	1.3	WSW
20250727	18:00	0.9	WSW
20250727	18:15	0.4	WSW
20250727	18:30	0.4	WSW
20250727	18:45	0.4	WSW
20250727	19:00	0.4	SW
20250727	19:15	0.4	SW
20250727	19:30	0	
20250727	19:45	0	SSW
20250727	20:00	0	
20250727	20:15	0	
20250727	20:30	0.4	SSW
20250727	20:45	0.4	S
20250727	21:00	0.4	S
20250727	21:15	0.9	S
20250727	21:30	0.9	S
20250727	21:45	0.4	S
20250727	22:00	0.4	S S
20250727	22:15	0.4	S
20250727	22:30	0	
20250727	22:45	0	S
20250727	23:00	0	
20250727	23:15	0	
20250727	23:30	0	 S
20250727	23:45	0.4	S
20230727	<u> </u>	0.4	<u>_</u>

Data Time Wind				
Date	Time	Speed	Wind Direction	
(YYYYMMDD)	(HH:MM)	(m/s)		
20250728	00:00	0.0	S	
20250728	00:15	0.0	S	
20250728	00:30	0.4	S	
20250728	00:45	0.0	S	
20250728	01:00	0.4	S	
20250728	01:15	0.4	S	
20250728	01:30	0.0	S	
20250728	01:45	0.4	S	
20250728	02:00	0.0	S	
20250728	02:15	0.0	S	
20250728	02:30	0.0	S	
20250728	02:45	0.4	S	
20250728	03:00	0.4	S	
20250728	03:15	0.4	S	
20250728	03:30	0.0	S	
20250728	03:45	0.4	S	
20250728	04:00	0.0	S	
20250728	04:15	0.4	S	
20250728	04:30	0.4	S	
20250728	04:45	0.0	S	
20250728	05:00	0.0	S	
20250728	05:15	0.0	S	
20250728	05:30	0.4	SSW	
20250728	05:45	0.4	SSW	
20250728	06:00	0.4	S	
20250728	06:15	0.0	S	
20250728	06:30	0.0	S	
20250728	06:45	0.4	S	
20250728	07:00	0.4	S	
20250728	07:15	0.9	SSE	
20250728	07:30	0.4	SSE	
20250728	07:45	0.9	SE	
20250728	08:00	0.9	WSW	
20250728	08:15	0.9	SSE	
20250728	08:30	0.9	SE	
20250728	08:45	0.9	WSW	
20250728	09:00	1.3	WSW	
20250728	09:15	1.3	WSW	
20250728	09:30	0.4	WSW	
20250728	09:45	0.9	WNW	
20250728	10:00	0.9	wsw	
20250728	10:15	1.3	WSW	
20250728	10:30	0.9	WSW	
20250728	10:45	1.3	WSW	
20250728	11:00	1.3	WSW	
20250728	11:15	0.9	wsw	
20250728	11:30	1.3	WSW	
20250728	11:45	0.9	WSW	

Data	Time o	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250728	12:00	0.9	WSW
20250728	12:15	1.3	WSW
20250728	12:30	0.9	WSW
20250728	12:45	0.9	NNW
20250728	13:00	0.9	WSW
20250728	13:15	1.3	WSW
20250728	13:30	0.9	WSW
20250728	13:45	0.9	WSW
20250728	14:00	1.8	WSW
20250728	14:15	1.3	WSW
20250728	14:30	1.3	WSW
20250728	14:45	0.9	NNW
20250728	15:00	0.9	WSW
20250728	15:15	0.9	WSW
20250728	15:30	1.3	WSW
20250728	15:45	1.3	NNW
20250728	16:00	2.7	NNW
20250728	16:15	1.8	NNW
20250728	16:30	1.3	NNW
20250728	16:45	0.9	N
20250728	17:00	0.9	N
20250728	17:15	0.4	N
20250728	17:30	0.0	N
20250728	17:45	0.0	N
20250728	18:00	0.4	ESE
20250728	18:15	0	ESE
20250728	18:30	0	ESE
20250728	18:45	0.4	ESE
20250728	19:00	0.9	SE
20250728	19:15	0.5	SE
20250728	19:30	0	
20250728	19:45	0	
20250728	20:00	0	SE
20250728	20:15	2.2	N N
20250728	20:30	3.1	NNW
20250728	20:45	1.3	N
20250728	21:00	0.9	E
20250728	21:15	0.4	SE
20250728	21:30	0.4	SE
20250728	21:45	0	NE NE
20250728	22:00	0	NE NE
20250728	22:15	0	NE NE
20250728	22:30	0	NE NE
20250728	22:45	0	NE NE
20250728	23:00	0	NE NE
		0.4	NE NE
20250728	23:15		
20250728	23:30	0	NE NE
20250728	23:45	0	

Date Time Wind			
(YYYYMMDD)	l	Speed	Wind Direction
(TTTTIVIIVIDD)	(וווויוויו)	(m/s)	
20250729	00:00	0.0	
20250729	00:15	0.0	
20250729	00:30	0.4	SE
20250729	00:45	0.4	SE
20250729	01:00	0.0	
20250729	01:15	0.4	SE
20250729	01:30	0.0	SE
20250729	01:45	0.0	SE
20250729	02:00	0.0	SE
20250729	02:15	0.0	SE
20250729	02:30	0.0	SE
20250729	02:45	0.0	
20250729	03:00	0.0	
20250729	03:15	0.0	
20250729	03:30	0.0	ESE
20250729	03:45	0.4	S
20250729	04:00	0.0	NNW
20250729	04:15	0.0	NNW
20250729	04:30	0.0	
20250729	04:45	0.4	E
20250729	05:00	0.4	S
20250729	05:15	0.0	S
20250729	05:30	0.0	S
20250729	05:45	0.0	
20250729	06:00	0.0	
20250729	06:15	0.0	
20250729	06:30	0.4	S
20250729	06:45	0.0	
20250729	07:00	0.0	S
20250729	07:15	0.0	S
20250729	07:30	0.0	S
20250729	07:45	0.4	S
20250729	08:00	0.9	N
20250729	08:15	0.4	NNW
20250729	08:30	0.9	N
20250729	08:45	0.4	NNW
20250729	09:00	0.4	NW
20250729	09:15	0.4	N
20250729	09:30	0.4	N
20250729	09:45	0.4	NW
20250729	10:00	0.0	NW
20250729	10:15	0.0	NW
20250729	10:30	0.0	NE NE
20250729	10:45	0.4	E
20250729	11:00	0.9	SE
20250729	11:15	1.8	SE
20250729	11:30	1.8	SE
20250729	11:45	1.8	SSE
20230123	11.73	1.0	JJL

Date	Time	Wind		
(YYYYMMDD)	(HH:MM)	Speed	Wind Direction	
		(m/s)		
20250729	12:00	0.9	ESE	
20250729	12:15	0.9	SE	
20250729	12:30	2.7	SE	
20250729	12:45	1.8	SE	
20250729	13:00	0.9	N	
20250729	13:15	0.4	SE	
20250729	13:30	1.3	SSE	
20250729	13:45	1.3	SE	
20250729	14:00	1.3	SE	
20250729	14:15	0.4	SE	
20250729	14:30	0.4	SE	
20250729	14:45	0.9	WSW	
20250729	15:00	1.3	WSW	
20250729	15:15	0.4	N	
20250729	15:30	0.9	WSW	
20250729	15:45	0.9	WSW	
20250729	16:00	0.4	N	
20250729	16:15	0.0	NNE	
20250729	16:30	0.9	WSW	
20250729	16:45	1.3	N	
20250729	17:00	0.9	SE	
20250729	17:15	0.4	SSE	
20250729	17:30	1.3	SE	
20250729	17:45	0.9	SE	
20250729	18:00	0.4	SE	
20250729	18:15	0.4	SE	
20250729	18:30	0.4	SE	
20250729	18:45	0.4	SSE	
20250729	19:00	0.9	SSE	
20250729	19:15	0	SSE	
20250729	19:30	0	SSE	
20250729	19:45	0.4	SSE	
20250729	20:00	0.4	SSE	
20250729	20:15	0	SSE	
20250729	20:30	0.4	SSE	
20250729	20:45	0		
20250729	21:00	0		
20250729	21:15	0		
20250729	21:30	0.4	SSE	
20250729	21:45	0.4	SSE	
20250729	22:00	0.4	SSE	
20250729	22:15	0	SSE	
20250729	22:30	0.4	SSE	
20250729	22:45	0.4	SSE	
20250729	23:00	0		
20250729	23:15	0		
20250729	23:30	0	NNE	
20250729	23:45	0	ENE	
20230729	23.43	U	LINE	

Date	Time	Wind		
	l	Speed	Wind Direction	
(YYYYMMDD)	(HH:IVIIVI)	(m/s)		
20250730	00:00	0.0	ENE	
20250730	00:15	0.0	ENE	
20250730	00:30	0.0	ENE	
20250730	00:45	0.0	ENE	
20250730	01:00	0.0	ENE	
20250730	01:15	0.0		
20250730	01:30	0.9	SE	
20250730	01:45	0.9	SE	
20250730	02:00	0.0	SE	
20250730	02:15	0.0	SE	
20250730	02:30	0.0	SE	
20250730	02:45	0.4	SE	
20250730	03:00	0.9	SE	
20250730	03:15	0.0	SE	
20250730	03:30	0.0		
20250730	03:45	0.0		
20250730	04:00	0.0		
20250730	04:15	0.0		
20250730	04:30	0.0		
20250730	04:45	0.0		
20250730	05:00	0.0		
20250730	05:15	0.0		
20250730	05:30	0.0		
20250730	05:45	0.0		
20250730	06:00	0.0		
20250730	06:15	0.0		
20250730	06:30	0.0		
20250730	06:45	0.0		
20250730	07:00	0.0		
20250730	07:15	0.0	NNW	
20250730	07:30	0.4	NNW	
20250730	07:45	0.4	WSW	
20250730	08:00	0.4	WSW	
20250730	08:15	0.9	WSW	
20250730	08:30	0.0	NNW	
20250730	08:45	0.4	WSW	
		0.4	WSW	
20250730	09:00	0.4	WSW	
	09:15	0.4	WSW	
20250730	09:30		+	
20250730	09:45	0.9	WSW	
20250730	10:00	0.4	WSW	
20250730	10:15	0.4	WSW	
20250730	10:30	0.9	WSW	
20250730	10:45	0.4	WSW	
20250730	11:00	0.0	NW	
20250730	11:15	0.9	WSW	
20250730	11:30	0.9	WSW	
20250730	11:45	0.9	NW	

Dota .	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250730	12:00	1.3	WSW
20250730	12:15	1.8	WSW
20250730	12:30	0.9	WSW
20250730	12:45	1.3	WSW
20250730	13:00	0.9	WSW
20250730	13:15	1.3	WSW
20250730	13:30	0.9	WNW
20250730	13:45	0.9	WSW
20250730	14:00	1.3	WSW
20250730	14:15	1.8	WSW
20250730	14:30	1.3	WSW
20250730	14:45	1.8	NNW
20250730	15:00	1.3	WSW
20250730	15:15	0.9	WSW
20250730	15:30	1.3	WSW
20250730	15:45	1.8	WSW
20250730	16:00	1.3	WSW
20250730	16:15	1.3	WSW
20250730	16:30	0.9	WSW
20250730	16:45	0.9	WSW
20250730	17:00	0.4	WSW
20250730	17:15	0.4	W
20250730	17:30	1.3	SE
20250730	17:45	0.9	SE
20250730	18:00	0.9	SSE
20250730	18:15	0.9	WSW
20250730	18:30	0.9	WSW
20250730	18:45	0.9	WSW
20250730	19:00	0.9	WSW
20250730	19:15	0.4	WSW
20250730	19:30	0.4	WSW
20250730	19:45	0.4	SE
20250730	20:00	0	SSW
20250730	20:15	0.4	SSE
20250730	20:30	0	SSE
20250730	20:45	0	SSE
20250730	21:00	0.4	SSE
20250730	21:15	0	
20250730	21:30	0	SSE
20250730	21:45	0.4	SSW
20250730	22:00	0.4	SSW
20250730	22:15	0	ESE
20250730	22:30	0	ESE
20250730	22:45	0	ESE
20250730	23:00	0	ESE
20250730	23:15	0	SE
20250730	23:30	0	SE
20250730	23:45	0	SE

Data	Time	Wind	
Date (YYYYMMDD)	Time (HH:MM)	Speed	Wind Direction
ן (עטואוואואיזיזי)	(HH:IVIIVI)	(m/s)	
20250731	00:00	0.0	
20250731	00:15	0.0	SE
20250731	00:30	0.4	SE
20250731	00:45	0.4	SSE
20250731	01:00	0.4	SSE
20250731	01:15	0.4	SSE
20250731	01:30	0.9	SE
20250731	01:45	0.9	SE
20250731	02:00	0.4	SE
20250731	02:15	0.4	SE
20250731	02:30	0.4	SE
20250731	02:45	1.3	SE
20250731	03:00	1.3	SE
20250731	03:15	1.3	ESE
20250731	03:30	0.9	SE
20250731	03:45	1.8	SE
20250731	04:00	0.9	NNW
20250731	04:15	1.8	N
20250731	04:30	1.3	N
20250731	04:45	1.3	N
20250731	05:00	1.3	SE
20250731	05:15	0.9	SE
20250731	05:30	0.9	SSE
20250731	05:45	0.4	SSE
20250731	06:00	0.0	NE
20250731	06:15	0.0	N
20250731	06:30	0.4	N
20250731	06:45	0.0	N
20250731	07:00	0.0	N
20250731	07:15	0.0	N
20250731	07:30	0.0	SE
20250731	07:45	0.9	NNW
20250731	08:00	0.9	N
20250731	08:15	0.9	NNW
20250731	08:30	0.0	NNW
20250731	08:45	0.0	NNW
20250731	09:00	0.4	NNW
20250731	09:15	0.4	NNW
20250731	09:30	0.0	NNW
20250731	09:45	1.3	NNW
20250731	10:00	0.9	NNW
20250731	10:15	0.4	NNW
20250731	10:30	0.9	NNW
20250731	10:45	0.9	NW
20250731	11:00	0.4	NW
20250731	11:15	0.4	NW
20250731	11:30	0.4	NW
20250731	11:45	0.4	N

Data	Time	Wind	
Date	Time	Speed	Wind Direction
(YYYYMMDD)	(HH:MM)	(m/s)	
20250731	12:00	0.4	SE
20250731	12:15	0.9	SE
20250731	12:30	0.4	NNE
20250731	12:45	0.9	SE
20250731	13:00	0.9	SE
20250731	13:15	0.4	NNW
20250731	13:30	0.9	NNE
20250731	13:45	0.9	NW
20250731	14:00	1.3	WSW
20250731	14:15	0.9	W
20250731	14:30	0.4	NW
20250731	14:45	0.9	WSW
20250731	15:00	0.9	WSW
20250731	15:15	1.3	WSW
20250731	15:30	0.9	SE
20250731	15:45	0.9	WSW
20250731	16:00	0.9	WSW
20250731	16:15	0.4	WSW
20250731	16:30	0.4	WSW
20250731	16:45	0.0	WSW
20250731	17:00	0.0	WSW
20250731	17:15	0.0	WSW
20250731	17:30	0.0	WSW
20250731	17:45	0.0	
20250731	18:00	0	WSW
20250731	18:15	0.4	SW
20250731	18:30	0.9	SE
20250731	18:45	0.4	SE
20250731	19:00	0	SE
20250731	19:15	0	SSW
20250731	19:30	0	S
20250731	19:45	0.4	SE
20250731	20:00	0.4	SSE
20250731	20:15	0.4	SE
20250731	20:30	0	
20250731	20:45	0.4	SE
20250731	21:00	0.4	SE
20250731	21:15	0.4	SE
20250731	21:30	0.4	SE
20250731	21:45	0	SE
20250731	22:00	0	
20250731	22:15	0	
20250731	22:30	0	
20250731	22:45	0	
20250731	23:00	0	
20250731	23:15	0	
20250731	23:30	0	
20250731	23:45	0	
		-	!

Appendix J Waste Flow Table

Waste Flow Table (Updated to 28 Jul 2025)

	Total Quantities of Inert C&D Materials to be Generated from the Contract				Total Quantities of Recyclables Generation				Total Quantities of C&D Materials to be Generated from the Contract				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in Other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper / Cardboard Packaging	Plastics	Yard Waste (to Y-Park)	Chemical Waste	General Refuse	Others, e.g. non- recyclable yard waste
	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in tonne)	(in '000L)	(in tonne)	(in tonne)
Jan-25	168,646.98	0	48361.85	119,302	0	849.35	0	0	0	0	0	57.76	76.02
Feb-25	289,409.40	0	120705.57	168,201	0	115.28	0	0	0	0	0	241.88	145.67
Mar-25	206,271.43	0	52172.73	153,388	0	418.2	0	0	0	0	0	156.26	136.24
Apr-25	192,901.99	0	62122.45	129,495	0	1121.65	0	0	0	0	0	118.11	45.03
May-25	214,400.19	0	79056.7	134,473	0	648.15	0	0	0	0	0	222.34	0
Jun-25	107,274.99	0	43268.36	63,736	0	18.75	0	0	0	0	0	185.82	66.06
Jul-25	171,085.15	0	63631.4	105,641	0	948.55	0	0	0	0	0	263.36	600.77
Total	1,349,990.13	0.00	469,319.06	874,235.82	0.00	4,119.93	0.00	0.00	0.00	0.00	0.00	1,245.53	1,069.79

Note:

- 1. The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.
- 2. Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material.
- 3. Due to the construction waste transaction records (transaction period from 29 to 31 Jul 2025) not yet being released on the EPD website, the quantities of waste in Jul 2025 are only presented from 1 to 31 Jul 2025.

Appendix K Joint Environmental Site Inspection Records

Report No. 0162-20250708

Follow up action for previous Site Inspection:

Nil

Observation(s):

- 1. Accumulation of waste was found at Portion D.
- 2. Standing water was found at Portion D and the drip tray under the generator at temporary site office of Portion F3
- 3. Access road at the temporary site office of Portion E3 was dry and dust dispersion was found.

Reminder(s):

- 1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.
 - I. Precautions to be taken at any time of year when rainstorms are likely
 - a. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - b. Temporarily exposed slope surfaces should be covered e.g. by tarpaulin.
 - c. Temporary access roads should be protected by crushed stone or gravel.
 - d. Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.
 - e. Trenches should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.
 - II. Actions to be taken when a rainstorm is imminent or forecast
 - a. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly.
 - b. Open stockpiles of construction materials (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric.
 - c. All temporary covers to slopes and stockpiles should be secured.
 - III. Actions to be taken during or after rainstorms
 - a. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

- 1. The Contractor was advised to increase the frequency of waste disposal at Portion D.
- 2. The Contractor was recommended to fix the damaged water hose, direct the standing water to silt removal facility for treatment and clean the standing water at drip tray under the generator at the temporary site office of Portion E3.
- 3. The Contractor was advised to increase the frequency of watering at access road of temporary site office of Portion E3 to avoid dust dispersion.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:	M	I	M	Yd
Name:	Jason Man	1	Matt Choy/Kristy Wong	Simon Lee/ Kenneth Lam
Date:	7 July 2025	1	7 July 2025	7 July 2025

Report No. 0163-20250714

Follow up action for previous Site Inspection:

- 1. 30 June 2025 Observation 2 The water barriers were setup by the Contractor.
- 2. 8 July 2025 Observation 2 The standing water was removed by the Contractor.
- 8 July 2025 Observation 3 The unpaved access road has been protected by crushed stone or gravel.

Observation(s):

1. The standing water was found at drip tray under the generator of temporary site office.

Reminder(s):

- 1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.
 - I. Precautions to be taken at any time of year when rainstorms are likely
 - a. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - b. Temporarily exposed slope surfaces should be covered e.g. by tarpaulin.
 - c. Temporary access roads should be protected by crushed stone or gravel.
 - d. Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.
 - e. Trenches should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.
 - II. Actions to be taken when a rainstorm is imminent or forecast
 - a. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly.
 - b. Open stockpiles of construction materials (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric.
 - c. All temporary covers to slopes and stockpiles should be secured.
 - III. Actions to be taken during or after rainstorms
 - a. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.

Corrective Actions - Mitigation Measures Implemented or Proposed (if any):

1. The Contractor was recommended to remove the standing water at drip tray regularly, especially after rain event.

Environmental Site Inspection Checklist (Rev. 3)

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		1	1.	
Name:	Jason Man	1	Matt Choy/Kristy Wong	Simon Lee/ Kenneth
Date:	14 July 2025	1	14 July 2025	14 July 2025

Report No. 0164-20250721

Follow up action for previous Site Inspection:

Observation(s):

- 1. Standing water was found at the U-channel of Portion A.
- 2. Accumulated waste and standing water were found at the boundary of Portion A's process building.
- 3. Without covering open cement bags were found at 1/F of Portion A's process building.
- 4. Without covering the exposed slope was found at Portion E3.

Reminder(s):

- 1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.
 - I. Precautions to be taken at any time of year when rainstorms are likely
 - a. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - b. Temporarily exposed slope surfaces should be covered e.g. by tarpaulin.
 - c. Temporary access roads should be protected by crushed stone or gravel.
 - d. Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.
 - e. Trenches should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.
 - II. Actions to be taken when a rainstorm is imminent or forecast
 - a. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly.
 - b. Open stockpiles of construction materials (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric.
 - c. All temporary covers to slopes and stockpiles should be secured.
 - III. Actions to be taken during or after rainstorms
 - a. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- 1. The Contractor was recommended to direct the standing water into silt removal facility for treatment.
- 2. The Contractor was advised that general waste and C&D waste should be placed into enclosed bins and waste skips and to direct the standing water into silt removal facility for treatment.
- 3. The Contractor was recommended that open cement bags should be covered with impervious sheet when not in use.
- 4. The Contractor was advised that the exposed slope at Portion E3 should be covered with impervious sheet.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		luho.	Ml	401
Name:	Jason Man	Echo Hung	Matt Choy/Kristy Wong	Simon Lee/ Kenneth
Date:	21 July 2025	21 July 2025	21 July 2025	21 July 2025

Report No. 0165-20250728

Follow up action for previous Site Inspection:

Observation(s):

- 1. Accumulated waste was found at Portion A.
- 2. Access road was dry and dust dispersion was found at Portion A & E4.
- 3. Without cover was found at the enclosed rubbish bin of Temporary site office.

Reminder(s):

- 1. The Contractor was reminded that the control measures of surface runoff should be implemented in accordance with Appendix A2 of ProPECC PN 1/94.
 - I. Precautions to be taken at any time of year when rainstorms are likely
 - a. Silt removal facilities, channels and manholes should be maintained and the deposited silt and grit should be removed regularly.
 - b. Temporarily exposed slope surfaces should be covered e.g. by tarpaulin.
 - c. Temporary access roads should be protected by crushed stone or gravel.
 - d. Intercepting channels should be provided (e.g. along the crest/edge of excavation) to prevent storm runoff from washing across exposed soil surfaces.
 - e. Trenches should be dug and backfilled in short sections. Measures should be taken to minimize the ingress of rainwater into trenches.
 - II. Actions to be taken when a rainstorm is imminent or forecast
 - a. Silt removal facilities, channels and manholes should be checked to ensure that they can function properly.
 - b. Open stockpiles of construction materials (e.g. aggregates, sand and fill materials) on site should be covered with tarpaulin or similar fabric.
 - c. All temporary covers to slopes and stockpiles should be secured.
 - III. Actions to be taken during or after rainstorms
 - a. Silt removal facilities, channels and manholes should be checked and maintained to ensure satisfactory working conditions. Attention should be given to safety when carrying out this work.

Corrective Actions – Mitigation Measures Implemented or Proposed (if any):

- The Contractor was recommended to increase the waste separation facilities with proper label for paper, aluminium cans & plastic bottles and with proper label waste skips for C&D wastes. In addition, the accumulated waste should be cleaned up regularly.
- 2. The Contractor was advised to increase the frequency of watering to minimise the dust dispersion at access road.
- 3. The Contractor was advised to increase the cover for the enclosed rubbish bin.

	Environmental Team's Representative:	Independent Environmental Checker's Representative:	Contractor's Representative:	Employee's Representative
Signature:		/		led
Name:	Jason Man	1	Matt Choy/Kristy Wong	Simon Lee/ Kenneth
Date:	28 July 2025	1	28 July 2025	28 July 2025

Appendix L Environmental Mitigation Implementation Schedule (EMIS)

		on Implementat	indini Extension ion Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref.	Weekly Site Inspection Item	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
Air Quali	•	D7 D00			0 1 1	E.C. NENT	T	
S3.8.1	S3.1.8	B7 – B36	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation.	Good construction site practices to	Contractor	Entire NENT Landfill	To control the dust impact to within the criteria of EIA	√
		B4, B15 & B18		control the dust impact at the nearby sensitive receivers to		Extension site	Report (Register No. AEIAR- 111/2007)	✓
		B11 – B12						Vehicle washing facilities provided at vehicular exit point in Portion A, B1-2, D, E3-1 & E4
		-	Good site practice is recommended during construction phase.	criteria.				✓
	tion Noise	<u>'</u>						
S4	S4.9	C1	Use of good site practices to limit noise emissions by considering the following: Only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme;	Control construction airborne noise by means of good site	Contractor	Entire construction site	Noise Control Ordinance	✓
		C2	(b) Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum;	practices				✓
		C3	(c) Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs;					✓
		C4	(d) Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works;					N/A
		C5	(e) Mobile plant should be sited as far away from NSRs as possible and practicable;					✓
		C6 (f) Material stockpiles, mobile container site officer and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities.						✓
S4	S4.9	C11 – C13	2) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM standards.	Reduce the noise levels of plant items	Contractor	Entire construction site	Noise Control Ordinance & its TM	✓
						Site	Annex 5, TM-EIA	
Construc	tion Runoff	:		I		1	I	
S5.8.1	S5.2.1	D1	Construction on Site Runoff	Control construction	Contractor	Entire	ProPECC PN 1/94	(a) √
			(a) At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works and erosion and sedimentation control facilities implemented. (b) Channels (both temporary and permanent drainage pipes and culverts), earth bunds or sand bag barriers	runoff and erosion from site surface, drainage channel,		Construction site	Water Pollution Control Ordinance	(b) 🗸
			should be provided on site to direct stormwater to silt removal facilities.	stockpiles, wheel				
		D2	(a) The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. (b) Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse,	washing facilities, etc to minimize water				(a) √
			through a silt/sediment trap. (c) The sediment/silt traps should be incorporated in the permanent drainage channels	quality during				(b) √
			to enhance deposition rates.	construction stage				(c) √
		D3	The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94, which states that the retention time for silts and sediment traps should be 5 minutes under maximum flow conditions.					✓
		D4	(a) Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). (b) All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. (c) If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.					(a) ✓ (b) ✓ (c) ✓

Remarks:

Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

1

North East New Territories (NENT) Landfill Extension

Environmental Mitigation Implementation Schedule (EMIS) Construction Phase

			ion Schedule (EMIS) Construction Phase					
EIA	EM&A	Weekly	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Ref.	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
		Inspection		Measures & Main	the		achieve?	
		Item		Concerns to address	measures?			
Construct	ion Runoff	(Cont'd)						
S5.8.1	S5.2.1	D5	• (a) The overall slope of the site should be kept to a minimum to reduce the erosive potential of surface water	Control construction	Contractor	Entire	ProPECC PN 1/94	(a) √
			flows, and (b) all traffic areas and access roads protected by coarse stone ballast. An additional advantage	runoff and erosion		Construction		(b) √
			accruing from the use of crushed stone is the positive traction gained during prolonged periods of inclement	from site surface,		site	DSD Technical Circular	
			weather and the reduction of surface sheet flows.	drainage channel,			TC01/2017	
		D6	• (a) All drainage facilities and erosion and sediment control structures should be regularly inspected and (b)	stockpiles, wheel				(a) √, All drainage facilities and erosion and
			maintained to ensure proper and efficient operation at all times and particularly following rainstorms. (c)	washing facilities, etc			Water Pollution Control	sediment control structure had been
			Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated	to minimize water			Ordinance	inspected by Contractor regularly and
			areas.	quality during				especially after rainstorm.
				construction stage				(b) √, All drainage facilities and erosion and
								sediment control structure had been
								maintained by Contractor regularly and
								especially after rainstorm.
								(c) √, Deposited silt and grit had been
								removed regularly and especially after
								rainstorm.
		D7	(a) Measures should be taken to minimise the ingress of site drainage into excavations. If the excavation of					(a) √
		07	trenches in wet periods is necessary, they should be dug and backfilled in short sections wherever practicable.					1 ` '
			(b) Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt					(b) √
			removal facilities.					
		D8						
		50	Open stockpiles of construction materials (for example, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the					✓
			washing away of construction materials, soil, silt or debris into any drainage system.					
			washing away of construction materials, soil, silt of depris into any drainage system.					
		D9	(a) Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed					(a) ./
		53	so as (b) to prevent silt, construction materials or debris being washed into the drainage system and storm					(a) √
			runoff being directed into foul sewers.					(b) √
			Turion being directed into lour sewers.					
		D10	Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm					✓
		5.0	is imminent or forecasted, and actions to be taken during or after rainstorms are summarised in Appendix A2					•
			of ProPECC PN 1/94. Particular attention should be paid to the control of silly surface runoff during storm					
			events, especially for areas located near steep slopes.					
		D11	(a) All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris					(a) √
			and the like is deposited by them on roads. (b) An adequately designed and sited wheel washing bay should					1 ` '
			be provided at every construction site exit. (c) Wash-water should have sand and silt settled out and removed					(b) √
			at least on a weekly basis (d) to ensure the continued efficiency of the process. (e) The section of access road					(c) √
			leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall					(d) √
			toward the wheel-wash bay to prevent vehicle tracking of soil and silly water to public roads and drains.					(e) √
		D12	(a) Oil interceptors should be provided in the site drainage system downstream of any oil/fuel pollution sources.					(a) N/A
			(b) The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into					(b) N/A
			the storm water drainage system after accidental spillage. (c) A bypass should be provided for the oil					(c) N/A
			interceptors to prevent flushing during heavy rain.					` '
		D13	Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to					✓
			avoid water quality impacts. Requirements for solid waste management are detailed in Section 6 of this Report.					,
		D14	All fuel tanks and storage areas should be provided with docks and sited on sealed areas, within bunds of a					✓
			capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching					'
			water sensitive receivers nearby.					
		D15	To prevent pollution risks arising from works area (waste reception area) and haul roads, intercepting bund or		İ			✓
			barrier along the roadside should be constructed.		1			
Remarks:	I	1	· · · · · · · · · · · · · · · · · · ·	l .	1	ı	1	1

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

EIA Ref.	EM&A	Weekly	tion Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
		Inspection	(**************************************	Measures & Main	the		achieve?	
		Item		Concerns to address	measures?			
onstruct	ion Runoff	(Cont'd)		I .	l	ı	1	
.8.1	S5.2.1	D19	Sewage Effluent from Workforce	Control sewage	Contractor	On-site	ProPECC PN 1/94	(a) √
			(a) Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage	effluent arising from		sanitary		(b) √
			generated by the workforce. (b) A licensed contractor should be employed to provide appropriate and adequate	the sanitary facilities		facilities	DSD Technical Circular	(b) 4
			portable toilets and be responsible for appropriate disposal and maintenance.	provided for the on-			TC01/2017	
		D20	Notices will be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater	site construction				N/A
			into the nearby environment during the construction phase of the Project.	workforce			Water Pollution Control	
		_	Regular environmental audit on the construction site can provide an effective control of any malpractices and can	-			Ordinance	√
		-	achieve continual improvement of environmental performance on site.					Y
			achieve continual improvement of environmental performance on site.				Waste Disposal Ordinance	
5.8.1	S5.2.1	D21	Accidental Spillage of Chemical	Control of chemical	Contractor	Service	ProPECC PN 1/94	(a) N/A
			• (a) Any service workshop and maintenance facilities shall be located within a bunded area, and sumps and oil	leakage		workshop and		(b) N/A
			interceptors shall be provided. (b) Maintenance of equipment involving activities with potential for leakage and			maintenance	Water Pollution Control	
			spillage will only be undertaken within the areas.			facilities	Ordinance	
							Waste Disposal Ordinance	
osion C	ontrol Mea	sures						
.8.2	S5.2.2	-	Erosion Control /Measures	Erosion control	Contractor	Drainage	ProPECC PN 1/94	✓
			a. Preserve Natural Vegetation			system		
			This Best Management Practices will involve preserving natural vegetation to the greatest extent possible				Water Pollution Control	
			during the construction process. and after construction where appropriate. Maintaining natural vegetation is				Ordinance	
			the most effective and inexpensive form of erosion prevention control.					
		-	b. Provision of Buffer Zone					✓
			A buffer zone consists of an undisturbed area or strip of natural vegetation or an established suitable planting					
			adjacent to a disturbed area that reduces erosion and runoff. The rooted vegetation holds soils acts as a wind					
			break and filters runoff that may leave the site.					
		-	c. Seeding (Temporary/Permanent)					✓
			A well-established vegetative cover is one of the most effective methods of reducing erosion. Vegetation should					
			be established on construction sites as the slopes are finished, rather than waiting until all the grading is					
			complete. Besides, Hydroseeding will be applied on the surface of stockpiled soil and on temporary soil covers					
			for inactive tipping areas to prevent soil erosion during rainy season.					
		-	d. Ground Cover					To be implemented
			Ground Cover is a protective layer of straw or other suitable material applied to the soil surface. Straw mulch					
			and/or hydromulch are also used in conjunction with seeding of critical areas for the establishment of temporary					
			or permanent vegetation. Ground cover provides immediate temporary protection from erosion. Mulch also					
			enhances plant establishment by conserving moisture, holding fertilizer, seed, and topsoil in place, and					
			moderating soil temperatures.	-				
		-	e. Hydraulic Application					To be implemented
			Hydraulic application is a mechanical method of applying erosion control materials to bare soil in order to					
			establish erosion-resistant vegetation on disturbed areas and critical slopes. By using hydraulic equipment,					
			soil amendments, mulch, tackifying agents, Bonded Fiber Matrix (BFM) and liquid co-polymers can be					
			uniformly broadcast, as homogenous slurry, onto the soil. These erosion and dust control materials can often					
			be applied in one operation.	1				
			f. Sod					✓
			Establishes permanent turf for immediate erosion protection and stabilizes drainageways.	_				
			g. Matting					✓
			There are numerous erosion control products available that can be described in various ways, such as matting,					
			blankets, fabric and nets. These products are referred as matting. A wide range of materials and combination					
			of materials are used to produce matting including, but not limited to: straw, jute, wood fiber, coir (coconut					
			fiber), plastic netting, and Bonded Fiber Matrix. The selection of matting materials for a site can make a					
			significant difference in the effectiveness of the Best Management Practices.	1				

Remarks:

Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

3

North East New Territories (NENT) Landfill Extension

Environmental Mitigation Implementation Schedule (EMIS) Construction Phase

			tion Schedule (EMIS) Construction Phase					
EIA	EM&A	Weekly	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Ref.	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
		Inspection		Measures & Main	the		achieve?	
		Item		Concerns to address	measures?			
Erosion (Control Meas	sures (Cont'd						
S5.8.2	S5.2.2		h. Plastic Sheeting	Erosion control	Contractor	Drainage	ProPECC PN 1/94	✓
			Plastic Sheeting will provide immediate protection to slopes and stockpiles. However, it has been known to			system		
			transfer erosion problems because water will sheet flow off the plastic at high velocity. This is usually				Water Pollution Control	
			attributable to poor application, installation and maintenance.				Ordinance	
		-	i. Dust Control	†				√, Mist Cannons, Water Trucks, Water
			Dust Control is one preventative measure to minimize the wind transport of soil, prevent traffic hazards and					Sprinklers had been applied for dust control at
			reduce sediment transported by wind and deposited in water resources.					access roads and exposed area of the project
								site.
Surface V	⊥ Vater Draina	ago Systom						Site.
		<u> </u>		Curfo on Motor	Cantrastar	Curfoss water	Water Dellution Control	
S5.8.2	S5.2.2	D22	(a) Temporary surface water drainage system will be provided to manage runoff during construction and	Surface Water	Contractor	Surface water	Water Pollution Control	(a) √
			operation. (b) This system will consist of channels as constructed around the perimeter of the site area. (c)	Management/ Control		system	Ordinance	(b) √
			,	run off		Construction		(c) √
			ultimately to the point of discharge. (d) Erosion will therefore be minimised.				TM-water	(d) √
		D23	(a) The temporary surface water drainage system will include the use of a silt fence around the soil stockpile	1				
		D23	(a) The temporary surface water drainage system will include the use of a slit tence around the soil stockpile areas to prevent sediment from entering the system. (b) Regular cleaning will be carried out to prevent blockage					(a) √
			, , , , , , , , , , , , , , , , , , , ,					(b) ✓, Regular cleaning at silt fence had been
			of the passage of water flow in silt fence.					conducted by the contractor, especially,
]				after rainstorm.
		-	• Intermediate drainage system will be installed for filled cell/phase. The major purpose of the intermediate					N/A
			drainage system is to prevent the clean surface water run-off from the filled phases coming into contact with					
			the waste mass in active cell and to prevent excessive surface water infiltration through the intermediate cover,					
			thus contribute to increasing volume of leachate. The intermediate drainage system will collect the clean					
			surface water run-off and divert it to the permanent discharge channels connected to the public drainage					
			system.					
		_	In addition, surface flow from the haul road (especially near the wheel washing facility) will be collected to a	†				N/A
			dry weather flow interceptor and conveyed to the on-site leachate treatment plant for further treatment.					
Masta M	nagament		-,					
	anagement WM1		COD Materials	Cood site prestice to	Cantrastar	Fatire	Wests Disposal Ordinanas	
S6	VVIVI	-	C&D Materials	Good site practice to	Contractor	Entire	Waste Disposal Ordinance	✓
			Implement proper waste management measures during construction phase as stipulated in the Environmental	minimise C&D waste		construction	ETME TO (ME) NI 40/0005	
			Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 Environmental Management in	generation and		site	ETWB TC(W) No. 19/2005	
			Construction Sites.	reuse/recycle all C&D				
				on-site as far as			DEVB TC(W) No. 6/2010	
		-	Implement a trip-ticket system to ensure that the movement of C&D materials are properly documented and	possible				✓
			verified in accordance with DEVB TC(W) No. 6/2010. Copies/counterfoils from trip-tickets (with quantities of					
			C&D Materials off-site) should be kept for record purposes.					
			Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005.	-				./
		-	Appropriate waste management should be implemented in accordance with the ETWB TC(W) No. 19/2005.					✓
		E4	• (a) Make provisions in Contract documents to allow and promote the use of recycled aggregates where	1				(a) √
			appropriate. Ensure material balance in terms of excavated C&D materials in the design of NENT landfill	1				(b) √
			extension project. (b) The contract specifications should specify no excavated materials should be removed					(b) 4
			from the landfill extension site, but should be fully reused.					
			·]				
		E5	Careful design, planning and good site management to minimise over-ordering and waste materials such as					(a) √
			concrete, mortars and cement grouts. (a)(b) The design of formwork should maximise the use of standard					(b) √
			wooden panels so that high reuse levels can be achieved. (c) Alternatives such as steel formwork or plastic					(c) √
			fencing should be considered to increase the potential for reuse.					(6) 4
		F0	() TI O () () () () () () () () () (1			
		E6	(a) The Contractor should recycle as much as possible the C&D waste on-site through proper waste					(a) √
			segregation on-site. (b) Concrete and masonry should be used as general fill and steel reinforcement bars can					(b) √
			be used by scrap steel mills. (c) Proper areas should be designated for waste segregation and storage					(c) √
			wherever site conditions permit. (d) Maximise the use of reusable steel formwork to reduce the amount of C&D					(d) √
			material.					\-', '

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

IA	EM&A	Weekly	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
		Inspection	(to be mapped and angular color to control of the color o	Measures & Main	the		achieve?	
		Item		Concerns to address	measures?		domeve.	
Vacto Ma	ınagement (Concerns to address	measures:			
3	WM1	E7	(a) Maintain temporary stockpiles and reuse excavated fill material for backfilling and reinstatement. On-site	Good site practice to	Contractor	Entire	Waste Disposal Ordinance	100
١	VVIVII	= 1		minimise C&D waste	Contractor	1	Waste Disposal Ordinance	(a) \checkmark
			sorting and segregation facility of all type of wastes is considered as one of the best practice in waste			construction	ETIMP TO(M) No. 10/2005	(b) √
			management and hence, should be implemented in all projects generating construction waste. (b) The sorted	generation and		site	ETWB TC(W) No. 19/2005	
			public fill and C&D waste should be properly reused.	reuse/recycle all C&D on-site as far as			DEVID TO(M) No. 6/2010	
		E8	• (a) Excavated slope, stockpiled material and bund walls should be covered by tarpaulin until used in order to				DEVB TC(W) No. 6/2010	(a) √
			prevent wind-blown dust during dry weather, and to reduce muddy runoff during wet weather. (b)(c) Appropriate	possible				(b) √
			measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by					1 1 1
			transporting wastes in enclosed containers					(c) √
		E9	If any topsoil-like materials need to be stockpiled for any length of time, consideration should be given to					✓
			hydroseeding of the topsoil on the stockpile to improve its visual appearance and prevent soil erosion.					
		E10	Noningting of annual design of the control of the c					
		E10	Nomination of approved personnel to be responsible for good site practices and making arrangements for a literature of all was to a personnel to be responsible for good site practices and making arrangements for a literature of all was to a personnel to be responsible for good site practices and making arrangements for a literature of all was to a personnel to be responsible for good site practices and making arrangements for a literature of a literatur					✓
			collection of all wastes generated on-site and effective disposal.					
		E11	Training of site personnel for cleanliness, proper waste management procedures including chemical waste					✓
			handling, and waste reduction, reuse and recycling concepts.					
		E12	Regular cleaning and maintenance programme systems, sumps and oil interceptors.					✓
		E13	(a) Prior to disposal of C&D waste, wood, steel and other metals should be separated for re-use and/or					(a) √
			recycling to minimise the quantity of waste to be disposed of to landfill. (b)(c) Proper storage and site practices					(b) √
			should be implemented to minimise the potential for damage or contamination of construction materials.					1 : 1
								(c) N/A
			Plan and stock construction materials carefully to minimise amount of waste generated and avoid unnecessary					✓
			generation of waste. Minimise excessive ordering of concrete, mortars and cement grout by doing careful check					
			before ordering.					
	WM2	E16 –	Chemical Waste	Ensure proper	Contractor	Entire	Waste Disposal (Chemical	✓
	VVIVIZ	E23		disposal of chemical	Contractor	construction	Waste) General	*
		223	Chemical waste that is produced, as defined by Schedule 1 of the Waste Disposal (Chemical Waste) (General)	waste generated on-		site	Regulation	
			Regulation, should be handled in accordance with the Code of Practice on the Packaging, Labelling and	site to minimise the		0.10	, regulation	
			Storage of Chemical Wastes.	associated hazards			Code of Practice on the	
			Plant/equipment maintenance schedule should be designed to optimise maintenance effectiveness and to	on human health and			Packaging, Labelling and	✓
		_	minimise the generation of chemical wastes. Where possible, chemical wastes (e.g. waste lube oil) should be	environment			Storage of Chemical Waste	*
			recycled by licensed treatment facilities				Storage of Griefinian Tracts	
			recycled by ilicensed fleatifient facilities					
		E17 &	Containers used for storage of chemical wastes should be suitable for the substance they are holding, resistant					✓
		E18	to corrosion, maintained in a good condition, and securely closed; have a capacity of less than 450 liters unless					
			the specification has been approved by the EPD. Display a label in English and Chinese in accordance with					
			instructions prescribed in Schedule 2 of the Regulation.					
		F10						
		E19	• (a) The storage area for chemical wastes should be clearly labelled and used solely for storage of chemical					(a) √
			waste, (b) enclosed with at least 3 sides, having an impermeable floor and bund of sufficient capacity to					(b) N/A
			accommodate 110% of volume of the largest container or 20 % of total volume of waste stored in that area,					(c) N/A
			(c)(d) whichever is the greatest, having adequate ventilation, being covered to prevent rainfall entering, and					(d) N/A
			being arranged so that incompatible materials are adequately separated.					
		E20	Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g.					✓
		• Chemical waste should be collected by licensed waste collectors and disposed of at licensed facility, e.g. Chemical Waste Treatment Centre.						['
		I .		I	1	1	i	

Remarks:

Compliance of mitigation measure

Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

5

EIA	EM&A	Weekly	ion Schedule (EMIS) Construction Phase Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
lef.	Log Ref	Site	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	5.0.00
		Inspection	, , , , , , , , , , , , , , , , , , , ,	Measures & Main	the		achieve?	
		Item		Concerns to address	measures?			
aste M	anagement	(Cont'd)			•	•		
i	WM3	E1	General Refuse	Minimise generation	Contractor	Entire	Waste Disposal Ordinance	✓
			General refuse generated on-site should be properly stored in enclosed bins or compaction units separately	of general refuse to		construction		
			from construction and chemical wastes.	avoid odour, pest and		site		
		E2	• (a) All recyclable materials (separated from the general waste) should be stored on-site in appropriate	visual nuisance				(a) √
			containers with cover prior to collection by a local recycler for subsequent reuse and recycling. Residual, non-					(b) √
			recyclable, general waste should be stored in appropriate containers to avoid odour. (b)(c)(d) Regular collection					(c) √
			should be arranged by an approved waste collector in purpose-built vehicles that minimise environmental					(d) √
			impacts during transportation					√
		_	 Reputable waste collector should be employed by the Contractor to remove general refuse from the site, separately from construction and chemical wastes, on a daily basis to minimise odour, pest and litter impacts. 					Y
			Burning of refuse on construction sites is prohibited by law.					
		-	Aluminium cans should be separated from general waste stream and collected by recyclers. Proper collection	1				√
			bins should be provided on- site to facilitate the waste sorting.					,
		-	Office waste paper should recycled if the volume warrant collection by recyclers. Participation in community	-				✓
			waste paper recycling programme should be considered by the Contractor, including waste paper, aluminium					•
			cans, plastic bottles, waste batteries, etc.					
-G			·	·				
ithin N	ENT Landfill	Extension						
7	LFG1	F1	Special LFG precautions should be taken due to close proximity of NENT landfill extension site to existing landfill	To minimise the risk	Contractor	Entire	Landfill Gas Hazard	N/A
			to avoid potential hazards of LFG exposure (ignition, explosion, asphyxiation, toxicity).	of LFG hazards to		construction	Assessment Guidance Note	
	LFG2	F2	Prominent safety warning signs should be erected on-site to alert all personnel and visitors of LFG hazards during	personnel in		site	(EPD/TR8/97)	✓
	1502	Fo	excavation works.	construction site			F&IU (Confined Spaces)	
	LFG3	F3	No smoking or burning should be permitted on-site.	_			Regulations	√
	LFG4	F4	Prominent 'No smoking' and 'No Naked Flames' signs should be erected on-site.				regulations	✓
	LFG5	F5	No worker should be allowed to work alone at any time in excavated trenches or confined areas on-site.				Code of Practice on Safety	✓
	LFG6	F6	Adequate fire fighting equipment should be provided on-site.				and Health at Work in	✓
	LFG7	F7	Construction equipment should be equipped with vertical exhaust at least 0.6m above ground installed with spark				Confined Spaces	✓
	1500		arrestors.	_				
	LFG8	F8	Electrical motors and extension cords should be explosion-proof and intrinsically safe for use on-site.					✓
	LFG9	F9	'Permit to Work' system should be implemented.					✓
	LFG10	F10	Welding, flame-cutting or other hot works should be conducted only under 'Permit to Work' system following clear					√
	. = =		safety requirements, gas monitoring procedures and presence of qualified persons to supervise the works.					
	LFG11	F11	(a) For piping assembly or conduit construction, all valves and seals should be closed immediately after installation					(a) N/A
			to avoid accumulation and migration of LFG. (b) If installation of large diameter pipes (diameter >600mm) is					(b) N/A
			required, the pipe ends should be sealed on one side during installation. (c) Forced ventilation is required prior to operation of installed pipeline. (d) Forced ventilation should also be required for works inside trenches deeper than					(c) N/A (d) N/A
			1m.					(d) 197A
	LFG12	F12	Frequency and location of LFG monitoring within excavation area should be determined prior to commencement of	1				√
			works. LFG monitoring in excavations should be conducted at no more than 10mm from exposed ground surface.					,
	LFG13	F13	For excavation works, LFG monitoring should be conducted (1) at ground surface prior to excavation, (2)	1				✓
			immediately before workers entering excavations, (3) at the beginning of each half-day work, and (4) periodically					
			throughout the working day when workers are in the excavation.					
	LFG14	F14	Any cracks on ground level encountered on-site should be monitored for LFG periodically. Appropriate action should					✓
			be taken in accordance with the action plan in Table 7.6 of EIA Report.					
	LFG15	F15	(a) LFG precautionary measures involved in excavation and piping works should be provided in accordance with					(a) N/A
			LFG Guidance Note and included in Safety Plan of construction phase. (b) Temporary offices or buildings should					(b) N/A
	1	İ	be located where free LFG has been proven or raised clear of ground at a separation distance of at least 500mm.		I			

Remar

Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

		ritories (NENT) La ation Implementa	tion Schedule (EMIS) Construction Phase					
EIA Ref.	EM&A Log Ref	Weekly Site Inspection Item	Recommended Precautionary/Mitigation Measures (to be implemented when the trigger level is exceeded, where necessary)	Objectives of the Recommended Measures & Main Concerns to address	Who to implement the measures?	Location of the measures	What requirement or standards for the measures to achieve?	Status
LFG (C								
		dfill Extension		T		T e. e.	1 1511 0 11 1	
S7	LFG16	FIG	For large development such as NENT landfill extension, a Safety Officer trained in the use of gas detection equipment and LFG- related hazards should be present on-site throughout the groundwork phase. The Safety Officer should be provided with an intrinsically safe portable instrument appropriately calibrated and capable of measuring the following gases: •CH ₄ : 0-100% and LEL: 0-100%/v •CO ₂ : 0-100% •O ₂ : 0-21%		Contractor	Entire construction site	Landfill Gas Hazard Assessment Guidance Note (EPD/TR8/97) F&IU (Confined Spaces) Regulations	√
	LFG17	F17	(a) Periodically during groundwork construction, the works area should be monitored for CH ₄ CO ₂ and O ₂ using appropriately calibrated portable gas detection equipment. The monitoring frequency and areas should be established prior to commencement of groundwork either by Safety Officer or appropriately qualified person. (b) Routine monitoring should be carried out in all excavations, manholes, created by temporary storage of building materials on-site. (c) All measurements in excavations should be made with monitoring tube located not more than 10mm from exposed ground surface.				Code of Practice on Safety and Health at Work in Confined Spaces	(a) N/A (b) N/A (c) N/A
	LFG18	F18	For excavations deeper than 1m, measurements should be conducted: • At ground surface before excavation commences; • Immediately before any worker enters the excavation; • At the beginning of each working day for entire period the excavation remains open; and Periodically throughout the working day whilst workers are in excavation.					✓
	LFG19	F19	For excavations between 300mm and 1m, measurements should be conducted: • Directly after excavation has been completed; and Periodic all whilst excavation remains open.					✓
	LFG20	F20	For excavations less than 300mm, monitoring may be omitted at the discretion of Safety Officer or appropriately qualified person.					✓
Landsc	ape and Vi	isual Phases		•		•		
S8	LV1	G4	 Advanced screening tree planting Early planting using fast growing trees and tall shrubs at strategic locations within site to block major view corridors to the site from the VSRs, and to locally screen haul roads, excavation works and site preparation works. Roadside planter and shrub planting design in front of Cheung Shan Temple. 	To minimise the impact on existing vegetation retained by personnel in construction	Contractor	Entire construction site	DEVB TC(W) No. 4/2020 - Tree Preservation DEVB TC(W)) No. 6/2015 - Maintenance of Vegetation	√
S8	LV2	G5	Boundary Green Belt planting Considerable planting belts proposed around the site perimeter and the construction of temporary soil bunds will screen the landfill operations to a certain degree. Fast growing and fire resistant plant species will be used.	To provide initiation on permanent landscape and visual			and Hard Landscape Features DEVB TC(W) No. 6/2011 -	To be implemented during operation phase
S8	LV3	G6	Temporary landscape treatment as green surface cover For certain areas where landfilling operations would have to be suspended temporarily for periods of years, simple temporary landscape treatment such as hydroseeding should be considered. During construction and operational phases, grass hydroseeding or synthetic covering material of green colour should also be used as a temporary slope cover if applicable.				Maintenance of Man-made Slopes and Emergency Repair on Stability of Land	√
S8	LV4	G7	Existing tree preservation Transplant existing trees and vegetation, which are identified as ecologically significant in Ecological Impact Assessment and as rare tree species recorded in the tree survey, under circumstances where technically feasible. For all affected trees, the principle of avoidance of tree felling and tree transplanting of tree before felling should apply whenever possible. A tree felling application should be submitted to DEVB-GLTMS and be approved before any trees are felled or transplanted.					√

Remarks:

Compliance of mitigation measure

* Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

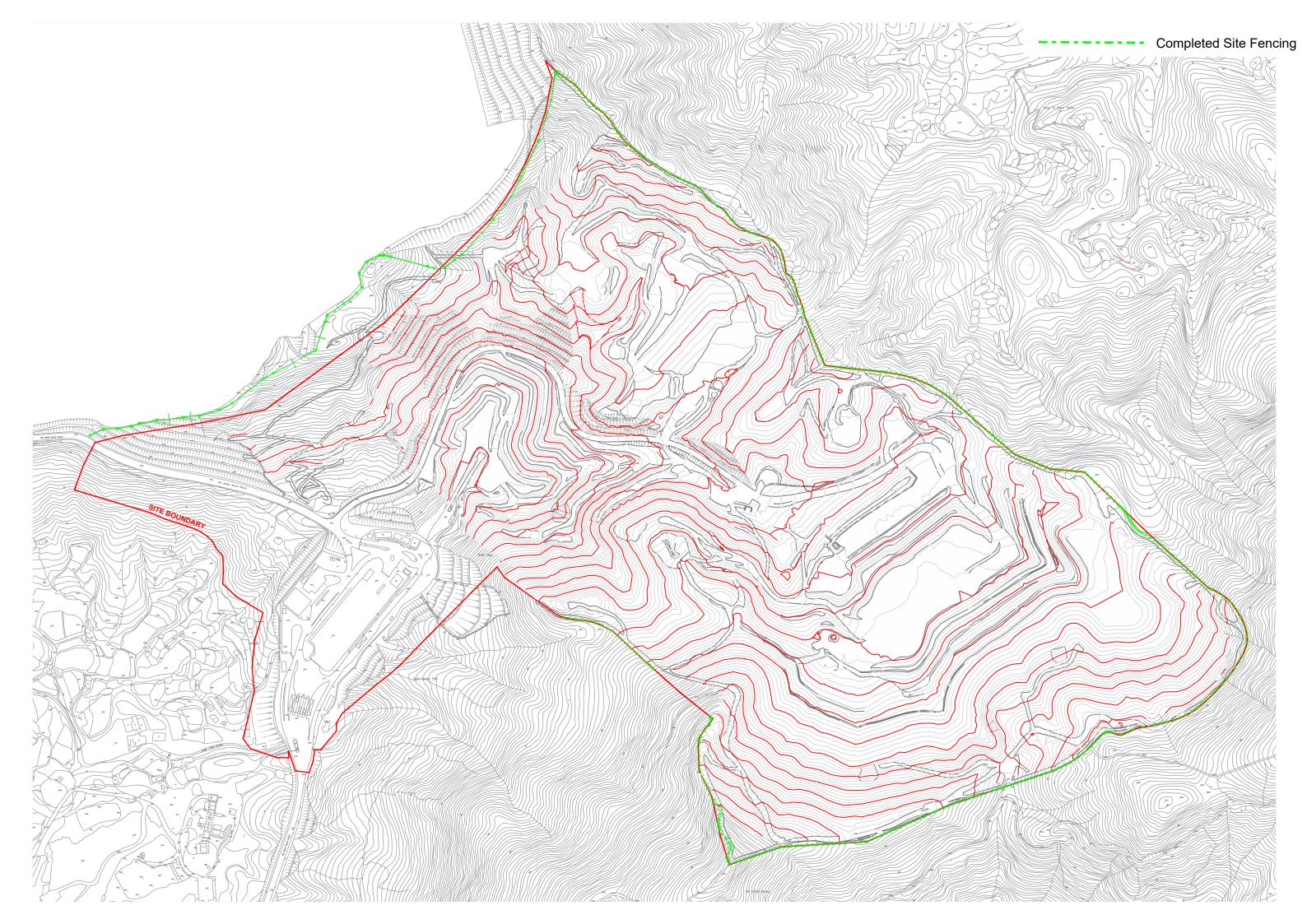
North East New Territories (NENT) Landfill Extension

Environmental Mitigation Implementation Schedule (EMIS) Construction Phase

nental Mit	gation Implementa	ation Schedule (EMIS) Construction Phase					
EM&A	Weekly Site	Recommended Precautionary/Mitigation Measures	Objectives of the	Who to	Location of the	What requirement or	Status
Log	Inspection	(to be implemented when the trigger level is exceeded, where necessary)	Recommended	implement	measures	standards for the measures to	
Ref	Item		Measures & Main	the		achieve?	
			Concerns to address	measures?			
1y			Concerno to address	modouros:			
	ion Measures:						
	ion ivieasures:		T=	10	1 =		
E1	-	Restriction of construction activities to the work areas that would be clearly demarcated.	To minimise	Contractor	Entire	Practice Note for Professional	✓
			environmental		construction site	Persons (ProPECC),	
E2	-	Reinstatement of the work areas immediately after completion of the works.	impacts and			Construction Site Drainage	✓
		,	therefore potential			(PN1/94)	'
			ecological impacts				
E3	-	Only well-maintained plant should be operated on-site and plant should be serviced regularly during the	within and near the			Code of Practice on the	✓
		construction programme.	construction site			Packaging, Labelling and	
E4	_	Machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work				Storage of Chemical Wastes,	√
		periods or should be throttled down to a minimum.				EPD (1992)	Y
		•				EFD (1992)	
E5	-	Plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed				ETIA/D TO ((A/)) N	✓
		away from nearby NSRs.				ETWB TC(W)) No. 33/2002	
E6	<u> </u>	Silencers or mufflers on construction equipment should be properly fitted and maintained during the construction	_			Management of Construction	N/A
		works.				and Demolition Material	14/74
						Including Rock	
E7	-	Mobile plant should be sited as far away from NSRs as possible and practicable.					✓
						DEVB TC(W) No. 6/2010 Trip	
E8	_	Material stockpiles, site office and other structures should be effectively utilised, where practicable, to screen	_			Ticket System for Disposal of	√
		noise from on-site construction activities.				Construction and Demolition	Y
						Materials	
E9	-	Use of "quiet" plant and working methods.				Materials	✓
						ETIME TO (MI)NI- 40/0005	
E10	_	Construction phase mitigation measures in the Practice Note for Professional Persons on Construction Site	_			ETWB TC(W)No.19/2005	√
-10		Drainage.				Environmental Management	Y
						on Construction Sites	
E11	-	Design and set up of the temporary on-site drainage system will be undertaken by the contractor prior to the					✓
		commencement of construction.					
E12	-	Design and incorporation of silt/sediment traps in the permanent drainage channels to enhance deposition rates	-				√
- ' -		and regular removal of reposited silt and grit.					Y
E13	-	Minimization of surface excavation works during the rainy seasons (April to September), and in particular, control					✓
		of silty surface runoff during storm events, especially for areas located near steep slopes.					
E14	 -	Regular inspection and maintenance of all drainage facilities and erosion and sediment control structures to	-				√
- 1-							Y
E15	-	Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					N/A
E15	-	ensure proper and efficient operation at all times and particularly following rainstorms. Provision of oil interceptors in the drainage system downstream of any oil/fuel pollution sources					N/A

Remarks:

Compliance of mitigation measure


Recommendation was made during site audit but improved/rectified by the contractor

Recommendation was made during site audit but not yet improved/rectified by the contractor.

N/A Not Applicable at this stage were conducted in the reporting period.

@ (Which measure) Alternative measure was made by the contractor.

Appendix M Mitigation Measures of Cultural Landscape Features

Appendix N Cumulative Complaint / Enquiry Log, Summaries of Complaints and Enquiries

Environmental Complaints Log

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C001_20221220	21 Dec 2022	Veolia (Contractor)	ET	Air Quality (Construction Dust)	5, 12 & 19 Dec 2022	It was noted from Veolia's email to the ET on 20 December 2022 that Veolia received complaint lodged regarding presenting much dusty materials at roundabout at Wo Keng Shan Road & dusty flying problem at Kowloon-bound traffic at Lung Shan Tunnel. No dusty materials and wastes were transported out from the NENTX site during the complaint period. During the regular weekly site inspection on 5, 12 & 19 December 2022, it was observed that the wheel washing facilities with high-pressure water jets have been provided at all site exits of NENTX and cleaned all vehicles before allowing them to leave the construction site to ensure that no mud or debris would be brought to the public area. All site vehicles of NENTX are also required to go through the auto wheel washing facility, which is managed by the operator of the NENT landfill, before entering the public area. The road section between the washing facilities and the exit point was paved with concrete, or bituminous materials were implemented in all site entrances. No mud generated from vehicles under the NENTX project after exiting the site entrance was observed. In conclusion, there is no direct evidence showing that the complaint is likely related to the NENTX project.	5 Jan 2023
C002_20230614	14 Jun 2023	EPD-RNG	ET	Water Quality	16, 21 Jun, 24, 25 Jul & 2 Aug 2023	It was noted from EPD-RNG's email to the ET on 14 Jun 2023 that EPD received complaint lodged regarding the muddy water was observed at Lin MA Hang International Bridge. In summary of the investigation, the pollutant water appeared crimson colour with bubbles ay the LMH-OP01 (Monitoring Point from EPD). The colour and pattern of pollutant water is different from the runoff at surface WQM monitoring location WM1. Hence, the project is not the major source causing the pollutant water. To minimise the potential impact of the project, the enhancement of mitigation measures at north boundary were advised to implement by contractor. The related rectified actions had been conducted by the contractor.	29 Jun & 21 Aug 2023

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C003_20230615	15 Jun 2023	EPD-RNG	ET	Water Quality	16, 19, 21 Jun, 18 Jul 2023	It was noted from EPD-RNG's email to the ET on 15 June 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD). In summary of the investigation, the muddy water caused from multipotential sources while the runoff from the box culvert under the Wo Keng Shan Road is the major source including runoff from Existing channel near Portion E3-1, discharge water from the silt removal facilities at Portion E3-1 of the project, runoff from branch near the entrance of Portion E3-1, runoff from weighting plaza of NENT Landfill & natural stream near Wo Keng Shan & Shui Ngau Tso etc Hence, the project is a part of factor causing the high turbidity muddy water. To minimise the potential impact of construction runoff from the project, the further mitigation measures and enhancement of the temporary surface water drainage system were advised to implement by contractor. The related rectified actions had been conducted by the contractor.	15 Jun, 21 Aug 2023
C004_20230803	3 Aug 2023	EPD-RNG	ET	Water Quality	18 Jul 2023	It was noted from EPD-RNG's email to the ET on 3 Aug 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD). In summary of the investigation, the muddy water caused from multipotential sources while the runoff from the box culvert under the Wo Keng Shan Road is the major source including runoff from Existing channel near Portion E3-1, discharge water from the silt removal facilities at Portion E3-1 of the project, runoff from branch near the entrance of Portion E3-1, runoff from weighting plaza of NENT Landfill & natural stream near Wo Keng Shan & Shui Ngau Tso etc Hence, the project is a part of factor causing the high turbidity muddy water. To minimise the potential impact of construction runoff from the project, the further mitigation measures and enhancement of the temporary surface water drainage system were advised to implement by contractor. The related rectified actions had been conducted by the contractor.	14 Aug 2023

Complaint Ref. No.	Date of Complaint Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
C005_20230818	18 Aug 2023	EPD-RNG	ET	Water Quality	18 Sep 2023	It was noted from EPD-RNG's email to the ET on 18 August 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD) on 14 August 2023. In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions had been conducted by the contractor.	13 October 2023
C006_20230914	14 Sep 2023	EPD-RNG	ET	Water Quality	18 Sep 2023	It was noted from EPD-RNG's email to the ET on 14 September 2023 that EPD received information regarding the muddy water was observed at River Ganges (GR3) (Water Quality Monitoring Location from EPD) on 11 September 2023. In summary of the investigation, the complaint is project related. It viewed that muddy water arising from wheel washing water from the site entrance at Portion E4 & Runoff from Existing Channel near Portion E3-1 & discharge water from the silt removal facilities at Portion E3-1 eventually flows into the box culvert under Wo Keng Shan Road, WM2 and ultimately to GR3. The related rectified actions had been conducted by the contractor.	13 October 2023
C007_20240509	9 May 2024	EPD-RNG	ET	Water Quality	13 May 2024	It was noted from EPD-RNG's email to the ET on 9 May 2024 that EPD receipted a memo from DSD/Mainland North regarding the incident of muddy water observed in Ping Yuen River, at the downstream of NENTX, on 23 April 2024. In summary of the investigation, the muddy water at the complaint location involved multi-potential sources (including the construction runoff of the project and runoff from existing landfill) based on the distance between the outlet of the project discharge point and the complaint location (distance around 1.16 km). The mitigation measures are recommended and reminded to implement and review by the contractor.	16 July 2024
C008_20241128	28 Nov 2024	EPD-RNG	ET	Water Quality	2 & 5 Dec 2024	It was noted from EPD-RNG's email to the ET on 28 November 2024 regarding the incident of muddy water observed in Ping Yuen River, at the downstream of NENTX, on 13 November 2024. Based on the surface water monitoring results, construction activities & related mitigation measures, weather record, environmental mitigation implementation status, joint weekly site inspections on 11, 18 November & 2 December 2024, additional site investigation / audit on 5 December 2024, the muddy water at the complaint location involved multi-potential sources (including the construction runoff of the	9 April 2025

Remarks:

- 1. "ET" equal to "Environmental Team"
- 2. "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"
- 3. "TBC" equal to "To Be Confirm"

project and runoff from existing landfill). While the major source of causing high turbidity level should be Surface runoff from Wo Keng Shan Road between Northing (m): 844604, Easting (m): 835332 and the entrance of Shek Tsai Ha Road in accordance with the actual observation on 13 November 2024 & Surface Runoff from Drainage System of NENT Landfill. The muddy water from drainage system including stormwater channels and drains collected the runoff from rainfall and runoff from dust control measures of existing landfill increase the concentration of runoff at Ping Yuen River.

Due to rainfall occurs on 13 November 2024, the severe weather increased the risk of landslips, finally increasing the concentration of suspended solids for surface runoff. Most rivers/streams/channels were affected by high amount of rainfall. Hence, the water quality of runoff at the complaint location would be affected by runoff from Wo Keng Shan, Shui Ngau Tso and other area between Surface WQM Location WM2 and the complaint location.

Although the silt removal facilities of the project were functionable normally under the investigation. The mitigation measures are recommended and reminded to implement and review by the contractor.

Environmental Enquiries Log

Enquiry Ref. No.	Date of Enquiry Received	Received from	Received by	Aspect of Complaint	Date of Investigation	Investigation Summary & Conclusion	Date of Reply
E009_20250410	10 Apr 2025	EPD-RNG	ET	Water Quality	7 Apr 2025	It was noted from EPD-RNG's email to the ET on 10 April 2025 regarding the incident of muddy water observed in Ping Yuen River, at the downstream of NENTX, on 7 April 2025. In summary of the investigation, the major source of causing high turbidity level should be surface runoff from Wo Keng Shan road between Northing (m): 844604, Easting (m): 835332 and the entrance of Shek Tsai Ha Road & surface runoff from drainage system of NENT Landfill. The muddy water from drainage system including stormwater channels and drains collected the runoff from rainfall and runoff from dust control measures of existing landfill increase the concentration of runoff at Ping Yuen River. Hence, the enquiry is not project related.	14 Jun 2025

Remarks:

- "ET" equal to "Environmental Team"
 "EPD-RNG" equal to "Environmental Protection Department-Regional Office (North)"
 "NA" equal to "Not Applicable"

Cumulative Statistics on Complaints

Aspects	Cumulative No. Brought Forward	No. of Complaints during reporting period	Cumulative Project-to- Date
Air Quality	1*	0	1*
Noise	0	0	0
Water Quality	7(1* & 1#)	0	7(1*)
Waste Management	0	0	0
Total	8(2* & 1#)	0	8(2*)

Remarks:

- * Equal to non-project related
 # Equal to the complaint under the investigation.

Prepared by:

Aurecon Hong Kong Limited
Unit 1608, 16/F, Tower B, Manulife Financial Centre,
223 – 231 Wai Yip Street, Kwun Tong,

Kowloon Hong Kong S. A. R.

T: +852 3664 6888 F: +852 3664 6999

E: hongkong@aurecongroup.com

